[email protected] +44 20 8123 2220 (UK) +1 732 587 5005 (US) Contact Us | FAQ |

The Global Market for White Biotechnology 2024-2034

November 2023 | 394 pages | ID: GAE7C06BE24EEN
Future Markets, Inc.

US$ 1,222.00

E-mail Delivery (PDF), Hard Copy Mail Delivery

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
White biotechnology harnesses living cells collected from yeast, molds, microorganisms and plants, and enzymes to produce renewable fuels, chemicals, materials and medicines. It relies on principles of biotechnology, molecular biology and synthetic biology to engineer organisms that efficiently convert raw materials into value-added products, that can be easily degraded, consume less energy and create less waste.

Key tools like metabolic engineering, fermentation, enzymatic biocatalysis, and directed evolution allow the biology of bacteria, yeast and algae to be optimized as microbial cell factories. Their metabolism can be tailored to convert sugars, waste lipids and even CO2 into target compounds like ethanol, organic acids, biopolymers and more. White biotechnology enables the sustainable production of both high-volume commodities as well as fine chemicals for pharmaceuticals. It allows renewable feedstocks like agricultural wastes and algae to be utilized as inputs. Biomanufacturing processes can achieve high specificity under mild conditions with far less waste than conventional chemistry.

The Global Market for White Biotechnology 2024-2034 provides a comprehensive overview of the global white biotechnology industry across markets including biofuels, bioplastics, chemicals, food, agriculture, pharmaceuticals. Technology Analysis includes production hosts (bacteria, yeast, fungi, marine, enzymes, photosynthetic microorganisms), biomanufacturing processes (batch, continuous), cell factories, synthetic biology, metabolic engineering, feedstocks (C1, C2, CO2, wastes, biomass). Market analysis includes industry trends and drivers, challenges and constraints, SWOT analysis, market map, end-use markets (biofuels, bioplastics, chemicals, food ingredients, agriculture, pharmaceuticals), global revenues 2018-2034 by market and region, company profiles.

Report contents include:
  • Principles and tools of white biotechnology. Analysis of major host organisms - engineered bacteria, yeast, algae, fungi - used in industrial biotechnology.
  • Key end product applications and markets. Markets covered include biofuels, renewable chemicals, bioplastics, ingredients, agriculture, cosmetics, textiles, and more. Analysis of market drivers, challenges, regulations, and outlook.
  • Insights into biomanufacturing processes and scale-up for commercialization. Batch vs continuous processing, bioreactors, downstream separation, and process analytical techniques.
  • Techno-economic analysis and market outlook.
  • Latest trends and future opportunities.
  • Global market revenues to 2034.
  • 235 company profiles spanning feedstock supply, biomanufacturing, and end-product companies. Analysis of how startups, SMEs, and large corporations apply biotech across the value chain. Companies profiled include ДIO, Ardra Bio, Bolt Threads, Cascade Biocatalysts, C16 Biosciences, Circe, Danimer Scientific, Debut Biotechnology, Fermelanta, Future Fields, Gingko Bioworks, Green Bioactives, HydGene Renewables, LanzaTech, Metabolic Explorer, Michroma, Modern Meadow, Newlight Technologies, Novozymes, Onego Bio, Pearl Bio, Pivot Bio, Provectus Algae, Seminal Biosciences, Spiber, Succinity, Terra Bioindustries, Visolis, and Yali Bio.
1 RESEARCH METHODOLOGY


2 INTRODUCTION

2.1 Definition
2.2 Comparison with conventional processes
2.3 Applications
2.4 Advantages
2.5 Sustainability
2.6 White Biotechnology for the Circular Economy
  2.6.1 Agricultural Waste
  2.6.2 Forestry and Paper Waste
  2.6.3 Gas Fermentation
  2.6.4 Plastics Upcycling
  2.6.5 Wastewater Valorization

3 TECHNOLOGY ANALYSIS

3.1 Production hosts
  3.1.1 Bacteria
  3.1.2 Yeast
  3.1.3 Fungi
  3.1.4 Marine
  3.1.5 Enzymes
  3.1.6 Photosynthetic organisms
3.2 Biomanufacturing processes
  3.2.1 Batch biomanufacturing
  3.2.2 Continuous biomanufacturing
3.3 Cell factories for biomanufacturing
3.4 Synthetic Biology
  3.4.1 Overview
  3.4.2 Metabolic engineering
  3.4.3 DNA synthesis
  3.4.4 CRISPR
    3.4.4.1 CRISPR/Cas9-modified biosynthetic pathways
  3.4.5 Protein/Enzyme Engineering
  3.4.6 Strain construction and optimization
  3.4.7 Synthetic biology and metabolic engineering
  3.4.8 Smart bioprocessing
  3.4.9 Cell-free systems
  3.4.10 Chassis organisms
  3.4.11 Biomimetics
  3.4.12 Sustainable materials
  3.4.13 Robotics and automation
    3.4.13.1 Robotic cloud laboratories
    3.4.13.2 Automating organism design
    3.4.13.3 Artificial intelligence and machine learning
  3.4.14 Fermentation Processes
3.5 Feedstocks
  3.5.1 C1 feedstocks
    3.5.1.1 Advantages
    3.5.1.2 Pathways
    3.5.1.3 Challenges
    3.5.1.4 Non-methane C1 feedstocks
    3.5.1.5 Gas fermentation
  3.5.2 C2 feedstocks
  3.5.3 Biological conversion of CO2
  3.5.4 Food processing wastes
  3.5.5 Lignocellulosic biomass
  3.5.6 Methane
  3.5.7 Municipal solid wastes
  3.5.8 Plastic wastes
  3.5.9 Plant oils
  3.5.10 Starch
  3.5.11 Sugars
  3.5.12 Used cooking oils
  3.5.13 Green hydrogen production
  3.5.14 Blue hydrogen production
3.6 Blue biotechnology (Marine biotechnology)
  3.6.1 Cyanobacteria
  3.6.2 Algae
  3.6.3 Companies

4 MARKET ANALYSIS

4.1 Market trends and drivers
4.2 Industry challenges and constraints
4.3 White biotechnology in the bioeconomy
4.4 SWOT analysis
4.5 Market map
4.6 Main end-use markets
  4.6.1 Biofuels
    4.6.1.1 Solid Biofuels
    4.6.1.2 Liquid Biofuels
    4.6.1.3 Gaseous Biofuels
    4.6.1.4 Conventional Biofuels
    4.6.1.5 Advanced Biofuels
    4.6.1.6 Feedstocks
      4.6.1.6.1 First-generation (1-G)
      4.6.1.6.2 Second-generation (2-G)
        4.6.1.6.2.1 Lignocellulosic wastes and residues
        4.6.1.6.2.2 Biorefinery lignin
      4.6.1.6.3 Third-generation (3-G)
        4.6.1.6.3.1 Algal biofuels
          4.6.1.6.3.1.1 Properties
          4.6.1.6.3.1.2 Advantages
      4.6.1.6.4 Fourth-generation (4-G)
      4.6.1.6.5 Energy crops
      4.6.1.6.6 Agricultural residues
      4.6.1.6.7 Manure, sewage sludge and organic waste
      4.6.1.6.8 Forestry and wood waste
      4.6.1.6.9 Feedstock costs
    4.6.1.7 Bioethanol
      4.6.1.7.1 Ethanol to jet fuel technology
      4.6.1.7.2 Methanol from pulp & paper production
      4.6.1.7.3 Sulfite spent liquor fermentation
      4.6.1.7.4 Gasification
        4.6.1.7.4.1 Biomass gasification and syngas fermentation
        4.6.1.7.4.2 Biomass gasification and syngas thermochemical conversion
      4.6.1.7.5 CO2 capture and alcohol synthesis
      4.6.1.7.6 Biomass hydrolysis and fermentation
      4.6.1.7.7 Separate hydrolysis and fermentation
        4.6.1.7.7.1 Simultaneous saccharification and fermentation (SSF)
        4.6.1.7.7.2 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
        4.6.1.7.7.3 Simultaneous saccharification and co-fermentation (SSCF)
        4.6.1.7.7.4 Direct conversion (consolidated bioprocessing) (CBP)
    4.6.1.8 Biodiesel
    4.6.1.9 Biogas
      4.6.1.9.1 Biomethane
      4.6.1.9.2 Feedstocks
      4.6.1.9.3 Anaerobic digestion
    4.6.1.10 Renewable diesel
    4.6.1.11 Biojet fuel
    4.6.1.12 Algal biofuels (blue biotech)
      4.6.1.12.1 Conversion pathways
      4.6.1.12.2 Market challenges
      4.6.1.12.3 Prices
      4.6.1.12.4 Producers
    4.6.1.13 Biohydrogen
      4.6.1.13.1 Biological Conversion Routes
        4.6.1.13.1.1 Bio-photochemical Reaction
        4.6.1.13.1.2 Fermentation and Anaerobic Digestion
    4.6.1.14 Biobutanol
    4.6.1.15 Bio-based methanol
      4.6.1.15.1 Anaerobic digestion
      4.6.1.15.2 Biomass gasification
      4.6.1.15.3 Power to Methane
    4.6.1.16 Bioisoprene
    4.6.1.17 Fatty Acid Esters
  4.6.2 Bio-based chemicals
    4.6.2.1 Acetic acid
    4.6.2.2 Adipic acid
    4.6.2.3 Aldehydes
    4.6.2.4 Acrylic acid
    4.6.2.5 Bacterial cellulose
    4.6.2.6 1,4-Butanediol (BDO)
    4.6.2.7 Bio-DME
    4.6.2.8 Dodecanedioic acid (DDDA)
    4.6.2.9 Ethylene
    4.6.2.10 3-Hydroxypropionic acid (3-HP)
    4.6.2.11 1,3-Propanediol (1,3-PDO)
    4.6.2.12 Itaconic acid
    4.6.2.13 Lactic acid (D-LA)
    4.6.2.14 1,5-diaminopentane (DA5)
    4.6.2.15 Tetrahydrofuran (THF)
    4.6.2.16 Malonic acid
    4.6.2.17 Monoethylene glycol (MEG)
    4.6.2.18 Propylene
    4.6.2.19 Succinic acid (SA)
    4.6.2.20 Triglycerides
    4.6.2.21 Enzymes
    4.6.2.22 Vitamins
    4.6.2.23 Antibiotics
  4.6.3 Bioplastics and Biopolymers
    4.6.3.1 Polylactic acid (PLA)
    4.6.3.2 PHAs
      4.6.3.2.1 Types
        4.6.3.2.1.1 PHB
        4.6.3.2.1.2 PHBV
      4.6.3.2.2 Synthesis and production processes
      4.6.3.2.3 Commercially available PHAs
    4.6.3.3 Bio-PET
    4.6.3.4 Starch blends
    4.6.3.5 Protein-based bioplastics
  4.6.4 Bioremediation
  4.6.5 Biocatalysis
    4.6.5.1 Biotransformations
    4.6.5.2 Cascade biocatalysis
    4.6.5.3 Co-factor recycling
    4.6.5.4 Immobilization
  4.6.6 Food and Nutraceutical Ingredients
    4.6.6.1 Alternative Proteins
    4.6.6.2 Natural Sweeteners
    4.6.6.3 Natural Flavors and Fragrances
    4.6.6.4 Texturants and Thickeners
    4.6.6.5 Nutraceuticals and Supplements
  4.6.7 Sustainable agriculture
    4.6.7.1 Biofertilizers
      4.6.7.1.1 Overview
      4.6.7.1.2 Companies
    4.6.7.2 Biopesticides
      4.6.7.2.1 Overview
      4.6.7.2.2 Companies
    4.6.7.3 Biostimulants
      4.6.7.3.1 Overview
      4.6.7.3.2 Companies
    4.6.7.4 Crop Biotechnology
      4.6.7.4.1 Genetic engineering
      4.6.7.4.2 Genome editing
      4.6.7.4.3 Companies
  4.6.8 Textiles
    4.6.8.1 Bio-Based Fibers
      4.6.8.1.1 Lyocell
      4.6.8.1.2 Bacterial cellulose
      4.6.8.1.3 Algae textiles
    4.6.8.2 Recombinant Materials
    4.6.8.3 Sustainable Processing
  4.6.9 Pharmaceuticals
  4.6.10 Cosmetics
  4.6.11 Surfactants and detergents
  4.6.12 Cement
    4.6.12.1 Biocement
    4.6.12.2 Mycelium materials
4.7 Global market revenues 2018-2034
  4.7.1 By market
  4.7.2 By region
4.8 Future Market Outlook

5 COMPANY PROFILES

5.1 Aemetis, Inc.
5.2 AEP Polymers
5.3 AgBiome
5.4 ДIO
5.5 Algal Bio Co., Ltd.
5.6 Algenol
5.7 AlgiKnit
5.8 Algiecel ApS
5.9 AgriSea NZ Seaweed Ltd
5.10 Alpha Biofuels (Singapore) Pte Ltd
5.11 AmphiStar
5.12 AMSilk GmbH
5.13 Andes Ag, Inc.
5.14 Antheia
5.15 Apeel Sciences
5.16 Arctic Biomaterials Oy
5.17 Ardra Bio
5.18 Arkeon
5.19 Arzeda
5.20 Asimov
5.21 AVA Biochem AG
5.22 Avantium B.V.
5.23 Azolla
5.24 Axcelon Biopolymers Corporation
5.25 BBCA Biochemical & GALACTIC Lactic Acid Co., Ltd.
5.26 Benefuel Inc.
5.27 BioBetter
5.28 Bioextrax AB
5.29 Bio Fab NZ
5.30 Biokemik
5.31 BIOLO
5.32 Biomason, Inc.
5.33 Bioplastech Ltd
5.34 BioSmart Nano
5.35 Biotic Circular Technologies Ltd.
5.36 Biosyntia
5.37 Biotecam
5.38 Bioweg
5.39 bit.bio
5.40 Bloom Biorenewables SA
5.41 BluCon Biotech GmbH
5.42 Blue BioFuels, Inc.
5.43 Bluepha Beijing Lanjing Microbiology Technology Co., Ltd.
5.44 Bon Vivant
5.45 Bolt Threads
5.46 Bosk Bioproducts Inc.
5.47 Bowil Biotech Sp. z o.o. ?
5.48 Braskem SA
5.49 Brightseed
5.50 Bucha Bio, Inc.
5.51 C1 Green Chemicals AG
5.52 C16 Biosciences
5.53 CABIO Biotech (Wuhan) Co, Ltd
5.54 California Cultured
5.55 Calysta
5.56 Camena Bioscience
5.57 Carbios
5.58 Cargill
5.59 Calyxt
5.60 Cascade Biocatalysts
5.61 Cass Materials Pty Ltd
5.62 Catalyxx
5.63 Cauldron
5.64 ChainCraft
5.65 Chitose Bio Evolution Pte Ltd.
5.66 CinderBio
5.67 Circe
5.68 CJ Biomaterials, Inc.
5.69 Clean Food Group
5.70 Colossal Biosciences
5.71 Colipi
5.72 Conagen
5.73 Constructive Bio
5.74 Danimer Scientific
5.75 Debut Biotechnology
5.76 Deep Branch Biotechnology
5.77 Demetrix
5.78 Dispersa
5.79 Domsjц Fabriker AB
5.80 DuPont
5.81 Ecovative Design LLC
5.82 Eco Fuel Technology, Inc
5.83 Eden Brew
5.84 EggPlant Srl
5.85 Elo Life Systems
5.86 Emerging Fuels Technology (EFT)
5.87 EnginZyme AB
5.88 Eni S.p.A.
5.89 Enzymaster
5.90 Enzymit
5.91 FabricNano
5.92 Fermentalg
5.93 eniferBio
5.94 ENOUGH
5.95 Epoch Biodesign
5.96 Evolved By Nature
5.97 Evonik Industries AG
5.98 Farmless
5.99 Fermelanta
5.100 Full Cycle Bioplastics LLC
5.101 Futerro
5.102 Future Fields
5.103 Gaiamer Biotechnologies
5.104 Geltor
5.105 Gen3Bio
5.106 Genecis Bioindustries, Inc.
5.107 Gevo, Inc
5.108 Genomatica
5.109 Ginkgo Bioworks
5.110 Green Bioactives
5.111 Green Earth Institute
5.112 Hexagon Bio
5.113 Humintech GmbH
5.114 Hyfй
5.115 Iogen Corporation
5.116 Insempra
5.117 Ittinsect
5.118 Itaconix
5.119 Kalion, Inc.
5.120 Kane Biotech, Inc.
5.121 Kinish
5.122 Kraig Biocraft Laboratories
5.123 Lanzatech
5.124 LCY Biosciences
5.125 Liberation Labs
5.126 Loam Bio
5.127 Leaf Resources Ltd.
5.128 Lignoflow Technologies AB
5.129 Lignolix, Inc.
5.130 LignoPure GmbH
5.131 Lignovations GmbH
5.132 Living Ink Technologies
5.133 Lixea Limited
5.134 Lumen Bioscience
5.135 Lygos, Inc
5.136 LXP Group GmbH
5.137 MadeRight
5.138 MakeGrowLab
5.139 Mango Materials, Inc.
5.140 Marea
5.141 Melt & Marble
5.142 MedPHA Bio-Tech Co., Ltd.
5.143 METabolic EXplorer S.A. (METEX)
5.144 Metgen Oy
5.145 Michroma
5.146 Modern Meadow, Inc.
5.147 Modern Synthesis
5.148 Mogrify
5.149 Molecular Assemblies
5.150 Moolec Science
5.151 Multus Biotechnology
5.152 MycoCycle, Inc.
5.153 MycoTechnology
5.154 MYCL
5.155 MycoWorks
5.156 Myconeos
5.157 Mylium BV
5.158 Nafigate Corporation a.s.
5.159 NatPol
5.160 NatureWorks LLC
5.161 Nereid Biomaterials
5.162 NefFa
5.163 Newlight Technologies LLC
5.164 Ningbo Tianan Biologic Material
5.165 NoPalm Ingredients
5.166 Nosh.bio
5.167 Notpla
5.168 Nourish
5.169 Novomer
5.170 Novozymes A/S
5.171 Oakbio, Inc.
5.172 Octarine Bio
5.173 Onego Bio
5.174 Oimo
5.175 Origin by Ocean
5.176 Paques Biomaterials
5.177 Pearl Bio
5.178 Perfect Day
5.179 PHABuilder
5.180 Photanol B.V.
5.181 Phylloceuticals
5.182 Phytolon
5.183 Pili
5.184 Pivot Materials LLC
5.185 Plastus
5.186 PoLoPo
5.187 Polybion
5.188 Pow.bio
5.189 Prometheus Materials
5.190 Protein Evolution
5.191 Provectus Algae
5.192 Polyferm
5.193 Praj Industries Ltd.
5.194 Q-milk GmbH
5.195 Roquette S.A.
5.196 RWDC
5.197 Samsara Eco Pty Ltd.
5.198 Saphium Biotechnology GMBH
5.199 Scindo
5.200 ScobyTec GmbH
5.201 Seawear Ltd.
5.202 Seevix Material Sciences Ltd.
5.203 Sekab E-Technology AB
5.204 Seminal Biosciences
5.205 Smartfiber AG
5.206 Solar Foods
5.207 Soma Bioworks/White Lemur Co.
5.208 Solugen
5.209 Spiber, Inc.
5.210 Spidey Tek
5.211 Spinnova Oy
5.212 St1 Oy
5.213 SUPLA Bioplastics
5.214 SWAY
5.215 Teal Bioworks, Inc.
5.216 Terra Bioindustries
5.217 Teysha Technologies Limited
5.218 thyssenkrupp Industrial Solutions AG
5.219 Tianjin GreenBio Materials Co., Ltd
5.220 Total Corbion
5.221 Treemera GmbH
5.222 TripleW
5.223 Uluu
5.224 UPM Biochemicals
5.225 VEnvirotech Biotechnology SL
5.226 Versalis SpA
5.227 Vertus Energy Ltd.
5.228 Virent Inc.
5.229 Visolis, Inc.
5.230 Wild Microbes
5.231 WNWN Food Labs
5.232 Yali Bio
5.233 Yield10 Bioscience, Inc.
5.234 Zayt Bioscience
5.235 Zero Acre Farms

6 GLOSSARY

6.1 Acronyms
6.2 Terms

7 REFERENCES


LIST OF TABLES

Table 1. Biotechnology colours".Table 2. Differences between white biotechnology and conventional processes.
Table 3. Application areas of white biotechnology.
Table 4. Advantages of white biotechnology.
Table 5. Routes for carbon capture in white biotechnology.
Table 6. Molecules produced through industrial biomanufacturing.
Table 7. Commonly used bacterial hosts for white biotechnology production.
Table 8.Commonly used yeast hosts for white biotech production.
Table 9. Examples of fungal hosts used in white biotechnology processes.
Table 10. Examples of marine organisms as hosts for white biotechnology applications.
Table 11. Common microbial hosts used for enzyme production in white biotechnology.
Table 12. Photosynthetic microorganisms used as production hosts in white biotechnology.
Table 13. Biomanufacturing processes utilized in white biotechnology.
Table 14. Continuous vs batch biomanufacturing
Table 15. Key fermentation parameters in batch vs continuous biomanufacturing processes.
Table 16. Major microbial cell factories used in industrial biomanufacturing.
Table 17. Core stages - Design, Build and Test.
Table 18. Products and applications enabled by synthetic biology.
Table 19. Engineered proteins in industrial applications.
Table 20. Cell-free versus cell-based systems
Table 21. White biotechnology fermentation processes.
Table 22. Products from C1 feedstocks in white biotechnology.
Table 23. C2 Feedstock Products.
Table 24. CO2 derived products via biological conversion-applications, advantages and disadvantages.
Table 25. Production capacities of biorefinery lignin producers.
Table 26. Common starch sources that can be used as feedstocks for producing biochemicals.
Table 27. Biomass processes summary, process description and TRL.
Table 28. Pathways for hydrogen production from biomass.
Table 29. Overview of alginate-description, properties, application and market size.
Table 30. Blue biotechnology companies.
Table 31. Market trends and drivers in white biotechnology.
Table 32.Industry challenges and restraints in white biotechnology.
Table 33. White biotechnology key application sectors and products.
Table 34. Comparison of biofuels.
Table 35. Categories and examples of solid biofuel.
Table 36. Comparison of biofuels and e-fuels to fossil and electricity.
Table 37. Classification of biomass feedstock.
Table 38. Biorefinery feedstocks.
Table 39. Feedstock conversion pathways.
Table 40. First-Generation Feedstocks.
Table 41. Lignocellulosic ethanol plants and capacities.
Table 42. Comparison of pulping and biorefinery lignins.
Table 43. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 44. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.
Table 45. Properties of microalgae and macroalgae.
Table 46. Yield of algae and other biodiesel crops.
Table 47. ?Processes in bioethanol production.
Table 48. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.
Table 49. Biodiesel by generation.
Table 50. Biodiesel production techniques.
Table 51. Biofuel production cost from the biomass pyrolysis process.
Table 52. Biogas feedstocks.
Table 53. Advantages and disadvantages of Bio-aviation fuel.
Table 54. Production pathways for Bio-aviation fuel.
Table 55. Current and announced Bio-aviation fuel facilities and capacities.
Table 56. Algae-derived biofuel producers.
Table 57. Markets and applications for biohydrogen.
Table 58. Comparison of different Bio-H2 production pathways.
Table 59. Properties of petrol and biobutanol.
Table 60. Comparison of biogas, biomethane and natural gas.
Table 61. Applications of bio-based caprolactam.
Table 62. Applications of bio-based acrylic acid.
Table 63. Applications of bio-based 1,4-Butanediol (BDO).
Table 64. Applications of bio-based ethylene.
Table 65. Biobased feedstock sources for 3-HP.
Table 66. Applications of 3-HP.
Table 67. Applications of bio-based 1,3-Propanediol (1,3-PDO).
Table 68. Biobased feedstock sources for itaconic acid.
Table 69. Applications of bio-based itaconic acid.
Table 70. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).
Table 71. Applications of DN5.
Table 72. Applications of bio-based Tetrahydrofuran (THF).
Table 73. Markets and applications for malonic acid.
Table 74. Biobased feedstock sources for MEG.
Table 75. Applications of bio-based MEG.
Table 76. Applications of bio-based propylene.
Table 77. Biobased feedstock sources for Succinic acid.
Table 78. Applications of succinic acid.
Table 79. Bioplastics and bioplastic precursors synthesized via white biotechnology processes .
Table 80. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.
Table 81. PLA producers and production capacities.
Table 82.Types of PHAs and properties.
Table 83. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.
Table 84. Polyhydroxyalkanoate (PHA) extraction methods.
Table 85. Commercially available PHAs.
Table 86. Types of protein based-bioplastics, applications and companies.
Table 87. Applications of white biotechnology in bioremediation and environmental remediation.
Table 88. Biofertilizer companies.
Table 89. Biopesticides companies.
Table 90. Biostimulants companies.
Table 91. Crop biotechnology companies.
Table 92. Pharmaceutical applications of white biotechnology.
Table 93. Applications of white biotechnology in the cosmetics industry.
Table 94. Sustainable biomanufacturing of surfactants and detergents.
Table 95. Global revenues for white biotechnology, by market, 2018-2034 (Billion USD).
Table 96. Global revenues for white biotechnology, by region, 2018-2034 (Billion USD).
Table 97. White biotechnology Glossary of Acronyms.
Table 98. White biotechnology Glossary of Terms.

LIST OF FIGURES

Figure 1. CRISPR/Cas9 & Targeted Genome Editing.
Figure 2. Genetic Circuit-Assisted Smart Microbial Engineering.
Figure 3. Cell-free and cell-based protein synthesis systems.
Figure 4. Microbial Chassis Development for Natural Product Biosynthesis.
Figure 5. LanzaTech gas-fermentation process.
Figure 6. Schematic of biological CO2 conversion into e-fuels.
Figure 7. Overview of biogas utilization.
Figure 8. Biogas and biomethane pathways.
Figure 9. Schematic overview of anaerobic digestion process for biomethane production.
Figure 10. BLOOM masterbatch from Algix.
Figure 11. SWOT analysis: white biotechnology.
Figure 12. Market map: white biotechnology.
Figure 13. Schematic of a biorefinery for production of carriers and chemicals.
Figure 14. Hydrolytic lignin powder.
Figure 15. Range of biomass cost by feedstock type.
Figure 16. Overview of biogas utilization.
Figure 17. Biogas and biomethane pathways.
Figure 18. Schematic overview of anaerobic digestion process for biomethane production.
Figure 19. Algal biomass conversion process for biofuel production.
Figure 20. Pathways for algal biomass conversion to biofuels.
Figure 22. Biobutanol production route.
Figure 23. Renewable Methanol Production Processes from Different Feedstocks.
Figure 24. Production of biomethane through anaerobic digestion and upgrading.
Figure 25. Production of biomethane through biomass gasification and methanation.
Figure 26. Production of biomethane through the Power to methane process.
Figure 27. Overview of Toray process.
Figure 28. Bacterial nanocellulose shapes
Figure 29. PHA family.
Figure 30. AlgiKicks sneaker, made with the Algiknit biopolymer gel.
Figure 31. BioMason cement.
Figure 32. Microalgae based biocement masonry bloc.
Figure 33. Typical structure of mycelium-based foam.
Figure 34. Commercial mycelium composite construction materials.
Figure 35. Global revenues for white biotechnology, by market, 2018-2034 (Billion USD).
Figure 36. Global revenues for white biotechnology, by region, 2018-2034 (Billion USD).
Figure 37. Algiknit yarn.
Figure 38. ALGIECEL PhotoBioReactor.
Figure 194. Jelly-like seaweed-based nanocellulose hydrogel.
Figure 39. BIOLO e-commerce mailer bag made from PHA.
Figure 40. Domsjц process.
Figure 42. Mushroom leather.
Figure 41. PHA production process.
Figure 43. Lignin gel.
Figure 44. BioFlex process.
Figure 45. TransLeather.
Figure 46. Reishi.
Figure 47. Compostable water pod.
Figure 48. Precision Photosynthesis™ technology.
Figure 49. Enfinity cellulosic ethanol technology process.
Figure 50. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 51. Lyocell process.
Figure 52. Spider silk production.
Figure 53. Corbion FDCA production process.
Figure 54. UPM biorefinery process.
Figure 55. The Proesa® Process.


More Publications