[email protected] +44 20 8123 2220 (UK) +1 732 587 5005 (US) Contact Us | FAQ |

The Global Market for Anti-icing and De-icing Nanocoatings

September 2017 | 90 pages | ID: G44CCC31F40EN
Future Markets, Inc.

US$ 530.00

E-mail Delivery (PDF), Hard Copy Mail Delivery

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
Ice accumulation on surfaces is a significant global problem that incurs high costs and impairs functionality and safety. There are several methods to reduce the damage of icesnow accumulation such as heating, mechanical deicing, use deicing agents or anti-icing coatings. Compared to other methods, anti-icing/icephobic coating has many advantages.

The use of anti-icing (to prevent or reduce ice accumulation) and de-icing (to reduce ice adhesion) nanocoatings can have a major impact on:
  • improving safety.
  • reducing maintenance costs.
  • reducing energy consumption.
  • environment-friendliness
  • simplicity and convenience.
Applications on anti-icing and de-icing nanocoatings are found in:
  • aviation.
  • transportation (aircrafts, cars, trains and ships).
  • wind turbines.
  • heat exchangers.
  • solar energy.
  • Arctic oil and gas exploration.
Report contents include:
  • Market drivers and trends.
  • Types of anti-icing and de-icing nanocoatings.
  • Global market size for anti-icing and de-icing nanocoatings.
  • Anti-icing and de-icing nanocoatings companies.
1 INTRODUCTION

1.1 Aims and objectives of the study
1.2 Market definition
  1.2.1 Categorization

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

3.1 High performance coatings
3.2 Nanocoatings
3.3 Market drivers and trends
  3.3.1 New functionalities and improved properties
  3.3.2 Need for more effective protection and improved asset sustainability
  3.3.3 Cost of weather-related damage
  3.3.4 Cost of corrosion
  3.3.5 Need for improved hygiene
  3.3.6 Increased demand for coatings for extreme environments
  3.3.7 Sustainable coating systems and materials
    3.3.7.1 VOC and odour reduction
    3.3.7.2 Chemical to bio-based
3.4 Market size and opportunity
  3.4.1 Main markets
  3.4.2 Regional demand
3.5 Market and technical challenges
  3.5.1 Durability
  3.5.2 Dispersion
  3.5.3 Transparency
  3.5.4 Production, scalability and cost

4 NANOCOATINGS

4.1 Properties
4.2 Benefits of using nanocoatings
  4.2.1 Types
  4.2.2 Main production and synthesis methods
    4.2.2.1 Film coatings techniques
    4.2.2.2 Superhydrophobic coatings on substrates
    4.2.2.3 Electrospray and electrospinning
    4.2.2.4 Chemical and electrochemical deposition
    4.2.2.5 Chemical vapor deposition (CVD)
    4.2.2.6 Physical vapor deposition (PVD)
    4.2.2.7 Atomic layer deposition (ALD)
    4.2.2.8 Aerosol coating
    4.2.2.9 Layer-by-layer Self-assembly (LBL)
    4.2.2.10 Sol-gel process
    4.2.2.11 Etching
4.3 Hydrophobic coatings and surfaces
  4.3.1 Hydrophilic coatings
  4.3.2 Hydrophobic coatings
    4.3.2.1 Properties
4.4 Superhydrophobic coatings and surfaces
  4.4.1 Properties
  4.4.2 Durability issues
  4.4.3 Nanocellulose
4.5 Oleophobic and omniphobic coatings and surfaces
  4.5.1 SLIPS
  4.5.2 Covalent bonding
  4.5.3 Step-growth graft polymerization
  4.5.4 Applications

5 NANOCOATINGS MARKET STRUCTURE

6 MARKET ANALYSIS FOR ANTI-ICING AND DE-ICING NANOCOATINGS

6.1 Market drivers and trends
  6.1.1 Inefficiency of current anti-icing solutions
  6.1.2 Costs of damage caused by icing of surfaces
  6.1.3 Need for new aviation solutions
  6.1.4 Increasing use of drones in demanding conditions
  6.1.5 Oil and gas exploration
  6.1.6 Wind turbines
  6.1.7 Marine
6.2 Types of anti-icing and de-icing nanocoatings
  6.2.1 Hydrophobic and superhydrophobic coatings (HSH)
  6.2.2 SLIPS
  6.2.3 Heatable coatings
  6.2.4 Anti-freeze protein coatings
6.3 Global market size
    6.3.1.1 Nanocoatings opportunity
    6.3.1.2 Global revenues 2010-2027

7 ANTI-ICING AND DE-ICING NANOCOATINGS COMPANIES 79-89 (19 COMPANY PROFILES)

LIST OF TABLES

Table 1: Categorization of nanomaterials
Table 2: Properties of nanocoatings
Table 3: Markets for nanocoatings
Table 4: Disadvantages of commonly utilized superhydrophobic coating methods
Table 5: Technology for synthesizing nanocoatings agents
Table 6: Film coatings techniques
Table 7: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces
Table 8: Applications of oleophobic & omniphobic coatings
Table 9: Nanocoatings market structure
Table 10: Anti-icing and de-icing nanocoatings-Nanomaterials used, principles, properties, applications
Table 11: Nanomaterials utilized in anti-icing coatings and benefits thereof
Table 12: Anti-icing and de-icing nanocoatings- Markets, applications and potential addressable markets
Table 13: Market assessment for anti-icing and de-icing nanocoatings
Table 14: Revenues for anti-icing and de-icing nanocoatings, 2010-2027, US$, conservative and optimistic estimates

LIST OF FIGURES

Figure 1: Estimated revenues for nanocoatings, 2010-2027 based on current revenues generated by nanocoatings companies and predicted growth Base year for estimates is 2015
Figure 2: Market revenues for nanocoatings 2015, US$, by market
Figure 3: Market revenues for nanocoatings 2027, US$, by market
Figure 4: Markets for nanocoatings 2015, %
Figure 5: Markets for nanocoatings 2027, %
Figure 6: Market for nanocoatings 2015, by nanocoatings type, US$
Figure 7: Markets for nanocoatings 2015, by nanocoatings type, %
Figure 8: Market for nanocoatings 2027, by nanocoatings type, US$
Figure 9: Market for nanocoatings 2027, by nanocoatings type, %
Figure 10: Regional demand for nanocoatings, 2016
Figure 11: Techniques for constructing superhydrophobic coatings on substrates
Figure 12: Electrospray deposition
Figure 13: CVD technique
Figure 14: SEM images of different layers of TiO2 nanoparticles in steel surface
Figure 15: (a) Water drops on a lotus leaf
Figure 16: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°
Figure 17: Contact angle on superhydrophobic coated surface
Figure 18: Self-cleaning nanocellulose dishware
Figure 19: SLIPS repellent coatings
Figure 20: Omniphobic coatings
Figure 21: Schematic of typical commercialization route for nanocoatings producer
Figure 22: Nanocoated surface in comparison to existing surfaces
Figure 23: NANOMYTE® SuperAi, a Durable Anti-ice Coating
Figure 24: SLIPS coating schematic
Figure 25: Carbon nanotube based anti-icing/de-icing device
Figure 26: CNT anti-icing nanocoating
Figure 27: Markets for anti-icing and de-icing nanocoatings, %
Figure 28: Potential addressable market for anti-icing and de-icing nanocoatings
Figure 29: Revenues for anti-icing and de-icing nanocoatings, 2010-2027, US$, conservative and optimistic estimates Conservative estimates in blue, optimistic in red


More Publications