[email protected] +44 20 8123 2220 (UK) +1 732 587 5005 (US) Contact Us | FAQ |

The Global Market for Solvometallurgy 2024-2034

August 2023 | 120 pages | ID: G467981E6AFAEN
Future Markets, Inc.

US$ 1,250.00

E-mail Delivery (PDF), Hard Copy Mail Delivery

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
Solvometallurgy involves the use of solvents other than water for mineral processing and metal extraction. It can provide environmental and economic benefits compared to traditional processes like pyrometallurgy. With ever increasing global demand from energy and high-tech markets for mined critical minerals and metals such as cobalt, chromium, gallium, germanium, graphite, indium, lithium, manganese, molybdenum, nickel, rare earths, and tellurium, the need to both increase supply and reduce dependence on imports from China is of critical importance. Long-term availability and cost stability of these materials is critical for a low-carbon energy future that will potentially require over 3 billion tons of new minerals and metals to achieve global climate goals by 2050.

Solvometallurgy can contribute to lower greenhouse gas emissions, energy use, and waste production compared to traditional processes, improve metal recoveries and achieve higher yields from ores and waste streams, at a lower cost. The development of the global market for solvometallurgy will be crucial for the extraction and recovery of metals and minerals to meet future demand. Players in the market include start-ups, mining companies and chemical producers.

Report contents include:
  • Technology analysis
  • Description of other processes.
  • Market drivers and challenges.
  • Key technologies and processes including
  • Solvent Extraction.
  • Bioleaching.
  • Chloride/Chlorine Leaching.
  • Supercritical Fluid Extraction.
  • Ionic Liquids.
  • Heap Leaching.
  • Direct Solvent Extraction.
  • Pressure Oxidation Leaching.
  • Microwave Heating.
  • Ultrasound-Assisted Leaching.
  • Resin-in-Pulp.
  • Electrowinning.
  • Advanced materials
  • Metal-Organic Frameworks (MOFs).
  • Deep eutectic solvents.
  • Nanoparticles.
  • Carbon nanotubes.
  • Conductive polymers.
  • Bio-materials.
  • Analysis of Metals and minerals processed and extracted including:
  • Copper.
  • Nickel.
  • Cobalt.
  • Rare Earth Elements (REE).
  • Lithium.
  • Gold.
  • Uranium.
  • Zinc.
  • Manganese.
  • Tantalum.
  • Niobium.
  • Indium.
  • Gallium.
  • Germanium.
  • Antimony.
  • Commercial solvometallurgy market analysis:
  • Current state of the market and future outlook.
  • Market players.
  • SWOT analysis.
  • Market map & value chain.
  • Historical and current market size estimates.
  • Profiles of 43 companies. Companies profiled include BacTech, BASF, Berkeley Energia, EnviroMetal Technologies, Metso, PH7, and Sumitomo Metal Mining.
1 RESEARCH METHODOLOGY


2 TERMS AND DEFINITIONS

3 TECHNICAL ANALYSIS

3.1 Description
3.2 Other processes
  3.2.1 Pyrometallurgy
  3.2.2 Hydrometallurgy
  3.2.3 Electrometallurgy
  3.2.4 Aeriometallurgy
3.3 Motivation for use
3.4 Key technologies. materials and processes
  3.4.1 Comparative analysis
  3.4.2 Solvent extraction
    3.4.2.1 Process description
    3.4.2.2 Advantages
    3.4.2.3 Challenges
  3.4.3 Bioleaching
    3.4.3.1 Process description
    3.4.3.2 Advantages
    3.4.3.3 Challenges
  3.4.4 Chloride/Chlorine Leaching
    3.4.4.1 Process description
    3.4.4.2 Advantages
    3.4.4.3 Challenges
  3.4.5 Supercritical Fluid Extraction
    3.4.5.1 Process description
    3.4.5.2 Advantages
    3.4.5.3 Challenges
  3.4.6 Ionic Liquids
    3.4.6.1 Process description
    3.4.6.2 Advantages
    3.4.6.3 Challenges
  3.4.7 Direct Solvent Extraction
    3.4.7.1 Process description
    3.4.7.2 Advantages
    3.4.7.3 Challenges
  3.4.8 Heap Leaching
    3.4.8.1 Process description
    3.4.8.2 Advantages
    3.4.8.3 Challenges
  3.4.9 Pressure Oxidation Leaching
    3.4.9.1 Process description
    3.4.9.2 Advantages
    3.4.9.3 Challenges
  3.4.10 Microwave Heating
    3.4.10.1 Process description
    3.4.10.2 Advantages
    3.4.10.3 Challenges
  3.4.11 Ultrasound-Assisted Leaching
    3.4.11.1 Process description
    3.4.11.2 Advantages
    3.4.11.3 Challenges
  3.4.12 Resin-in-Pulp
    3.4.12.1 Process description
    3.4.12.2 Advantages
    3.4.12.3 Challenges
  3.4.13 Electrowinning
    3.4.13.1 Process description
    3.4.13.2 Advantages
    3.4.13.3 Challenges
  3.4.14 Other
    3.4.14.1 Metal-Organic Frameworks (MOFs)
    3.4.14.2 Deep eutectic solvents
    3.4.14.3 Nanoparticles
    3.4.14.4 Carbon nanotubes
    3.4.14.5 Conductive polymers
    3.4.14.6 Bio-materials
3.5 Metals and minerals processed and extracted
  3.5.1 Copper
    3.5.1.1 Global copper demand and trends
    3.5.1.2 Markets and applications
    3.5.1.3 Copper extraction and recovery
  3.5.2 Nickel
    3.5.2.1 Global nickel demand and trends
    3.5.2.2 Markets and applications
    3.5.2.3 Nickel extraction and recovery
  3.5.3 Cobalt
    3.5.3.1 Global cobalt demand and trends
    3.5.3.2 Markets and applications
    3.5.3.3 Cobalt extraction and recovery
  3.5.4 Rare Earth Elements (REE)
    3.5.4.1 Global Rare Earth Elements demand and trends
    3.5.4.2 Markets and applications
    3.5.4.3 Rare Earth Elemens extraction and recovery
    3.5.4.4 Recovery of REEs from secondary resources
  3.5.5 Lithium
    3.5.5.1 Global lithium demand and trends
    3.5.5.2 Markets and applications
    3.5.5.3 Lithium extraction and recovery
  3.5.6 Gold
    3.5.6.1 Global gold demand and trends
    3.5.6.2 Markets and applications
    3.5.6.3 Gold extraction and recovery
  3.5.7 Uranium
    3.5.7.1 Global uranium demand and trends
    3.5.7.2 Markets and applications
    3.5.7.3 Uranium extraction and recovery
  3.5.8 Zinc
    3.5.8.1 Global Zinc demand and trends
    3.5.8.2 Markets and applications
    3.5.8.3 Zinc extraction and recovery
  3.5.9 Manganese
    3.5.9.1 Global manganese demand and trends
    3.5.9.2 Markets and applications
    3.5.9.3 Manganese extraction and recovery
  3.5.10 Tantalum
    3.5.10.1 Global tantalum demand and trends
    3.5.10.2 Markets and applications
    3.5.10.3 Tantalum extraction and recovery
  3.5.11 Niobium
    3.5.11.1 Global niobium demand and trends
    3.5.11.2 Markets and applications
    3.5.11.3 Niobium extraction and recovery
  3.5.12 Indium
    3.5.12.1 Global indium demand and trends
    3.5.12.2 Markets and applications
    3.5.12.3 Indium extraction and recovery
  3.5.13 Gallium
    3.5.13.1 Global gallium demand and trends
    3.5.13.2 Markets and applications
    3.5.13.3 Gallium extraction and recovery
  3.5.14 Germanium
    3.5.14.1 Global germanium demand and trends
    3.5.14.2 Markets and applications
    3.5.14.3 Germanium extraction and recovery
  3.5.15 Antimony
    3.5.15.1 Global antimony demand and trends
    3.5.15.2 Markets and applications
    3.5.15.3 Antimony extraction and recovery

4 MARKET ANALYSIS

4.1 Current state of the market
4.2 Market players
4.3 SWOT analysis
4.4 Market map
4.5 Value chain
4.6 Historical and current market size estimates
  4.6.1 Total revenues 2019-2022
  4.6.2 By process and technology
  4.6.3 By region
4.7 Growth projections and forecasts
  4.7.1 Estimated revenues 2023-2034
  4.7.2 By process and technology
  4.7.3 By region
4.8 Market drivers and growth factors
4.9 Market challenges

5 COMPANY PROFILES 81 (43 COMPANY PROFILES)

6 REFERENCES

LIST OF TABLES

Table 1. Comparison of technologies and processes.
Table 2. Markets and applications: copper.
Table 3. Markets and applications: nickel.
Table 4. Markets and applications: cobalt.
Table 5. Markets and applications: rare earth elements.
Table 6. Markets and applications: lithium.
Table 7. Markets and applications: gold.
Table 8. Markets and applications: uranium.
Table 9. Markets and applications: zinc.
Table 10. Markets and applications: manganese.
Table 11. Markets and applications: tantalum.
Table 12. Markets and applications: niobium.
Table 13. Markets and applications: indium.
Table 14. Markets and applications: gallium.
Table 15. Markets and applications: germanium.
Table 16. Markets and applications: antimony.
Table 17. Market players in solvometallurgy.
Table 18. Market players in hydrometallurgical processes and technologies.
Table 19. Global solvometallurgy market revenues, 2019-2022 (millions USD).
Table 20. Global solvometallurgy market revenues, 2019-2022, by process and technology (millions USD).
Table 21. Global solvometallurgy market revenues, 2019-2022, by region (millions USD).
Table 22. Global solvometallurgy market revenues, 2023-2034 (millions USD).
Table 23. Global solvometallurgy market revenues, 2023-2034, by process and technology (millions USD).
Table 24. Global solvometallurgy market revenues, 2023-2034, by region (millions USD).
Table 25. Market drivers and growth factors.
Table 26. Market challenges in solvometallurgy.

LIST OF FIGURES

Figure 1. Different types of metal extraction.
Figure 2. SWOT analysis: solvometallurgy market.
Figure 3. Market map: solvometallurgy market.
Figure 4. Solvometallurgy market value chain.
Figure 5. Global solvometallurgy market revenues, 2019-2022 (millions USD).
Figure 6. Global solvometallurgy market revenues, 2019-2022, by technology (millions USD).
Figure 7. Global solvometallurgy market revenues, 2019-2022, by region (millions USD).
Figure 8. Global solvometallurgy market revenues, 2023-2034 (millions USD).
Figure 9. Global solvometallurgy market revenues, 2023-2034, by technology (millions USD).
Figure 10. Global solvometallurgy market revenues, 2023-2034, by region (millions USD).


More Publications