[email protected] +44 20 8123 2220 (UK) +1 732 587 5005 (US) Contact Us | FAQ |

The Global Market for Metamaterials 2021-2031

June 2021 | 117 pages | ID: G5F72197B4E7EN
Future Markets, Inc.

US$ 1,400.00

E-mail Delivery (PDF), Hard Copy Mail Delivery

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
Metamaterials applications will represent a multi-billion market within the next decade with product advances in radar and lidar for autonomous vehicles, telecommunications antenna, 5G networks, coatings, vibration damping, wireless charging, noise prevention and more.

Metamaterials are artificially engineered structures with exceptional material properties (acoustic, electrical, magnetic, optical, etc.). They comprise arrays of resonators that manipulate electromagnetic waves or sound in ways not normally found in nature.

Possessing customized dielectric properties and tunable responses they allow for excellent flexibility in a range of applications, their use enabling the manipulation of fields and waves at a subwavelength scale.

Initial R&D in metamaterials has focused on cloaking and light manipulation, but the last few years has seen applications development in:
  • telecommunications
  • acoustics
  • sensors
  • radar imaging
  • optics (terahertz and infrared)
  • coatings & films
  • lidar systems for self-driving cars
  • medical imaging.
There are now over 30 metamaterials product developers worldwide, who have received >$300 million in recent investment as the metamaterials market picks up again after a sluggish few years.

Report contents include:
  • Description of the global metamaterials market in 2020.
  • Global revenue estimates to 2030 by markets.
  • Stage of commercialization for metamaterials applications, from basic research to market entry.
  • Market drivers, trends and challenges, by end user markets.
  • Competitive landscape.
  • In-depth market assessment of opportunities for metamaterials in sound insulation, vibration damping, antennas, thermal management, wireless charging, transport communications, radar, sensors, autonomous vehicles, anti-reflective plastics, security screening, EMI, anti-reflection coatings, solar coatings, displays, soft materials and medical imaging.
  • In-depth profiles of 35 companies, including products, investments, partnerships and commercial activities. Companies profiled include Anywaves, Emrod, Echodyne, Inc., Evolv Technologies, Inc., Fractal Antenna Systems, Inc, Kymeta Corporation, Lumotive, Phononic Vibes srl, Metamaterial Technologies, Inc. and Metawave Corporation.
  • Detailed forecasts for key growth areas, opportunities and user demand.
  • Revenues and activities by region.
  • Markets targeted, by product developers and end users.
1 INTRODUCTION

1.1 Aims and objectives of the study
1.2 Market opportunity analysis

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

3.1 Historical metamaterials market
3.2 Recent growth
3.3 Global market revenues, current and forecast
3.4 Regional analysis
3.5 Market opportunity assessment
3.6 Investment funding in metamaterials
3.7 Future perspectives and prospects
3.8 Market and technology challenges

4 METAMATERIALS OVERVIEW

4.1 What are metamaterials?
  4.1.1 Metasurfaces
4.2 Types of metamaterials
  4.2.1 Electromagnetic metamaterials
    4.2.1.1 Double negative (DNG) metamaterials
    4.2.1.2 Single negative metamaterials
    4.2.1.3 Electromagnetic bandgap metamaterials (EBG)
    4.2.1.4 Bi-isotropic and bianisotropic metamaterials
    4.2.1.5 Chiral metamaterials
  4.2.2 Terahertz metamaterials
  4.2.3 Photonic metamaterials
  4.2.4 Tunable metamaterials
  4.2.5 Frequency selective surface (FSS) based metamaterials
  4.2.6 Nonlinear metamaterials
  4.2.7 Acoustic metamaterials

5 MARKETS AND APPLICATIONS FOR METAMATERIALS

5.1 Global revenues for metamaterials, by market, 2017-2031 (Millions USD).
5.2 ACOUSTICS
  5.2.1 Market drivers and trends
  5.2.2 Applications
    5.2.2.1 Sound insulation
    5.2.2.2 Vibration dampeners
  5.2.3 Market assessment, growth prospects and revenue estimates
    5.2.3.1 Global revenues for metamaterials in acoustics, 2017-2031
5.3 COMMUNICATIONS
  5.3.1 Market drivers and trends
  5.3.2 Applications
    5.3.2.1 Antennas
    5.3.2.2 Thermal management
    5.3.2.3 Wireless charging
    5.3.2.4 Mobile communications in transport
  5.3.3 Market assessment, growth prospects and revenue estimates
    5.3.3.1 Global revenues for metamaterials in communications, 2017-2031
5.4 AUTOMOTIVE
  5.4.1 Market drivers and trends
  5.4.2 Applications
    5.4.2.1 Radar and sensors
    5.4.2.2 Autonomous vehicles
    5.4.2.3 Anti-reflective plastics
  5.4.3 Market assessment, growth prospects and revenue estimates
    5.4.3.1 Global revenues for metamaterials in automotive, 2017-2031
5.5 AEROSPACE, DEFENCE & SECURITY
  5.5.1 Market drivers and trends
  5.5.2 Applications
    5.5.2.1 Stealth technology
    5.5.2.2 Radar
    5.5.2.3 Optical sensors
    5.5.2.4 Security screening
    5.5.2.5 Composites
    5.5.2.6 Windscreen films
    5.5.2.7 Electromagnetic shielding
    5.5.2.8 Thermal management
  5.5.3 Market assessment, growth prospects and revenue estimates
    5.5.3.1 Global revenues for metamaterials in aerospace, defence and security 2017-2031
5.6 COATINGS AND FILMS
  5.6.1 Market drivers and trends
  5.6.2 Applications
    5.6.2.1 Cooling films
    5.6.2.2 Anti-reflection surfaces
    5.6.2.3 Optical solar reflection coatings
  5.6.3 Market assessment, growth prospects and revenue estimates
    5.6.3.1 Global revenues for metamaterials in coatings and films, 2017-2031
5.7 SOLAR
  5.7.1 Market drivers and trends
  5.7.2 Applications
  5.7.3 Global revenues for metamaterials in solar, 2017-2031
5.8 MEDICAL IMAGING
  5.8.1 Market drivers and trends
  5.8.2 Applications
    5.8.2.1 Radiation detectors
  5.8.3 Global revenues for metamaterials in medical imaging, 2017-2031
5.9 TOUCH SCREENS AND DISPLAYS
  5.9.1 Market drivers and trends
  5.9.2 Applications
    5.9.2.1 Stretchable displays
    5.9.2.2 Soft materials

6 METAMATERIALS COMPANY PROFILES 80 (35 COMPANY PROFILES)

7 MAIN METAMATERIALS RESEARCH CENTRES AND GROUPS

8 REFERENCES

TABLES

Table 1. Market summary for metamaterials.
Table 2. Global revenues for metamaterials, total, 2017-2031 (Millions USD), Conservative estimate.
Table 3. Global revenues for metamaterials, by region, 2017-2031 (Millions USD).
Table 4. Market opportunity assessment matrix for metamaterials applications.
Table 5. Investment funding in metamaterials companies.
Table 6. Market and technology challenges in metamaterials.
Table 7. Global revenues for metamaterials, by market, 2017-2031 (Millions USD).
Table 8: Metamaterials in sound insulation-market drivers and trends.
Table 9. Market assessment for metamaterials in acoustics.
Table 10. Market opportunity assessment for metamaterials in acoustics.
Table 11. Global revenues for metamaterials in acoustics, 2017-2031 (Millions USD).
Table 12: Metamaterials in communications-market drivers and trends.
Table 13. Unmet need, metamaterial solution and markets.
Table 14. Market assessment for metamaterials in communications.
Table 15. Market opportunity assessment for metamaterials in communications.
Table 16. Global revenues for metamaterials in communications, 2017-2031 (Millions USD).
Table 17: Metamaterials in the automotive sector-market drivers and trends.
Table 18. Market assessment for metamaterials in automotive.
Table 19. Market opportunity assessment for metamaterials in automotive.
Table 20. Global revenues for metamaterials in automotive, 2017-2031 (Millions USD).
Table 21: Metamaterials in aerospace, defence and security-market drivers and trends.
Table 22. Market assessment for metamaterials in aerospace, defence & security.
Table 23. Market opportunity assessment for metamaterials in aerospace, defence & security.
Table 24. Global revenues for metamaterials in aerospace, defence & security, 2017-2031 (Millions USD).
Table 25: Metamaterials in coatings and films-market drivers and trends.
Table 26. Market assessment for metamaterials in coatings and films.
Table 27. Market opportunity assessment for metamaterials in coatings and films.
Table 28. Global revenues for metamaterials in coatings and films, 2017-2031 (Millions USD).
Table 29: Metamaterials in solar-market drivers and trends.
Table 30. Global revenues for metamaterials in solar, 2017-2031 (Millions USD).
Table 31: Metamaterials in medical imaging-drivers and trends.
Table 32. Global revenues for metamaterials in medical imaging, 2017-2031 (Millions USD).
Table 33: Metamaterials in touch screens and displays-drivers and trends.
Table 34. Main metamaterials research centres and groups.

FIGURES

Figure 1. Global revenues for metamaterials, total, 2017-2031 (Millions USD).
Figure 2. Global revenues for metamaterials, by market, 2017-2031 (Millions USD).
Figure 3. Global revenues for metamaterials, by region, 2017-2031 (Millions USD).
Figure 4. Metamaterials commercialization roadmap.
Figure 5: Technology Readiness Level (TRL) for metamaterials.
Figure 6. Metamaterials example structures.
Figure 7. Metamaterial schematic versus conventional materials.
Figure 8. Electromagnetic metamaterial.
Figure 9. Schematic of Electromagnetic Band Gap (EBG) structure.
Figure 10. Schematic of chiral metamaterials.
Figure 11. Terahertz metamaterials.
Figure 12. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.
Figure 13. Global revenues for metamaterials, by market, 2017-2031 (Millions USD).
Figure 14. Prototype metamaterial device used in acoustic sound insulation.
Figure 15. Metamaterials installed in HVAC sound insulation the Hotel Madera Hong Kong.
Figure 16. Robotic metamaterial device for seismic-induced vibration mitigation.
Figure 17. Global revenues for metamaterials in acoustics, 2017-2031 (Millions USD).
Figure 18. Wireless charging technology prototype.
Figure 19. Flat-panel satellite antenna (top) and antenna mounted on a vehicle (bottom).
Figure 20. Global revenues for metamaterials in communications, 2017-2031 (Millions USD).
Figure 21. Metamaterials in automotive applications.
Figure 22. Lumotive advanced beam steering concept.
Figure 23. Illustration of EchoDrive operation.
Figure 24. Anti-reflective metamaterials plastic.
Figure 25. Global revenues for metamaterials in automotive, 2017-2031 (Millions USD).
Figure 26. Metamaterials invisibility cloak for microwave frequencies.
Figure 27. Metamaterials radar antenna.
Figure 28. Metamaterials radar array.
Figure 29. Evolv Edge visitor screening solution.
Figure 30. Lightweight metamaterial microlattice.
Figure 31. metaAIR eyewear.
Figure 32. Global revenues for metamaterials in aerospace, defence & security, 2017-2031 (Millions USD).
Figure 33. Schematic of dry-cooling technology.
Figure 34. Global revenues for metamaterials in coatings and films, 2017-2031 (Millions USD).
Figure 35. Global revenues for metamaterials in solar, 2017-2031 (Millions USD).
Figure 36. A patient in MRI scan modified by metasurface.
Figure 37. Global revenues for metamaterials in medical imaging, 2017-2031 (Millions USD).
Figure 38. Stretchable hologram.
Figure 39. Design concepts of soft mechanical metamaterials with large negative swelling ratios and tunable stress-strain curves.
Figure 40. Anywaves antenna products. CubeSat S-band antenna , CubeSat X-band antenna and UAV cellular antenna
Figure 41. Schematic of MESA System.
Figure 42. Evolv Edge screening system.
Figure 43. FM/R technology.
Figure 44. Metablade antenna.
Figure 45. MTenna flat panel antenna.
Figure 46. LIDAR system for autonomous vehicles.
Figure 47. Metamaterials film.
Figure 48. Metaboard wireless charger.
Figure 49. metaAIR.
Figure 50. Metamaterial structure used to control thermal emission.


More Publications