[email protected] +44 20 8123 2220 (UK) +1 732 587 5005 (US) Contact Us | FAQ |

The Global Market for Bioplastics 2024-2034

December 2023 | 744 pages | ID: GF6DF13A854EEN
Future Markets, Inc.

US$ 1,450.00

E-mail Delivery (PDF), Hard Copy Mail Delivery

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
The global plastic industry is worth over $600 billion per annum, but only a small percentage of plastics are from renewable resources. There is a growing movement to greatly reduce plastics that are not biodegradable or compostable, and companies are under increasing pressure from regulators, shareholders and customers to transition plastics products and consumption to eco-friendly alternatives – namely, biodegradable and/or recyclable solutions. Global bioplastics production grew by ~20% in 2023, with Bio-PLA, Bio-PA, Bio-PE and Bio-PTT accounting for most of the market. The market is running at almost full capacity production. The Global Bioplastics Market 2023-2034 is a 740+ page comprehensive analysis that provides granular data and in-depth analysis of bioplastics types, feedstocks, production capacities, end use applications, market trends, drivers/challenges, regional markets, and profiles of over 700 companies.

The report covers both bio-based/renewable and biodegradable plastics, including key materials such as PLA, PBAT, starch blends, PHA, PBS, Bio-PE, Bio-PET, Bio-PA, cellulose nanomaterials, protein-based bioplastics and more. Detailed quantitative data and forecasts are provided for global and regional production capacities by material and end use market to 2034. This essential industry report also analyzes the markets, applications and production volumes for natural fibers (wood, cellulosic, animal/protein based), lignin and bio-based chemicals & intermediates which also impact the bioplastics value chain.

Report contents include:
  • Global production capacities, market demand forecasts of bio-based and biodegradable plastics to 2034
  • Detailed analysis of bioplastic types - PLA, PBAT, starch blends, PHA, PBS, Bio-PE, Bio-PET, Bio-PA, cellulose nanomaterials, etc.
  • Feedstocks, manufacturing processes, properties, applications, market trends
  • Profiles and production capacities of over 700 companies across the bioplastics value chain. Companies profiled include Avantium, BASF, Biome Bioplastics, Braskem, Buyo, Danimer Scientific, FabricNano, FlexSea, Floreon, Gevo, MetaCycler BioInnovations, Mi Terro, PlantSwitch, Teijin Limited, Verde Bioresins, Versalis, and Xampla.
  • Market analysis and production forecasts to 2034 for natural fibers (plant-based, animal-based)
  • Global market analysis, applications and production forecasts for lignin
  • Production forecasts to 2034 for key bio-based chemicals & intermediates
  • End use applications and market segment analysis: Packaging (flexible, rigid), Consumer Goods, Automotive, Building & Construction, Textiles, Agriculture
  • Regional markets: North America, Europe, Asia-Pacific, Latin America
  • Latest R&D, new technologies, investments and industry developments
  • Key growth drivers, opportunities and challenges impacting the markets
1 RESEARCH METHODOLOGY


2 BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET

2.1 BIOREFINERIES
2.2 BIO-BASED FEEDSTOCK AND LAND USE
2.3 PLANT-BASED
  2.3.1 STARCH
    2.3.1.1 Overview
    2.3.1.2 Sources
    2.3.1.3 Global production
    2.3.1.4 Lysine
      2.3.1.4.1 Source
      2.3.1.4.2 Applications
      2.3.1.4.3 Global production
    2.3.1.5 Glucose
      2.3.1.5.1 HMDA
        2.3.1.5.1.1 Overview
        2.3.1.5.1.2 Sources
        2.3.1.5.1.3 Applications
        2.3.1.5.1.4 Global production
      2.3.1.5.2 1,5-diaminopentane (DA5)
        2.3.1.5.2.1 Overview
        2.3.1.5.2.2 Sources
        2.3.1.5.2.3 Applications
        2.3.1.5.2.4 Global production
      2.3.1.5.3 Sorbitol
        2.3.1.5.3.1 Isosorbide
          2.3.1.5.3.1.1 Overview
          2.3.1.5.3.1.2 Sources
          2.3.1.5.3.1.3 Applications
          2.3.1.5.3.1.4 Global production
      2.3.1.5.4 Lactic acid
        2.3.1.5.4.1 Overview
        2.3.1.5.4.2 D-lactic acid
        2.3.1.5.4.3 L-lactic acid
        2.3.1.5.4.4 Lactide
      2.3.1.5.5 Itaconic acid
        2.3.1.5.5.1 Overview
        2.3.1.5.5.2 Sources
        2.3.1.5.5.3 Applications
        2.3.1.5.5.4 Global production
      2.3.1.5.6 3-HP
        2.3.1.5.6.1 Overview
        2.3.1.5.6.2 Sources
        2.3.1.5.6.3 Applications
        2.3.1.5.6.4 Global production
        2.3.1.5.6.5 Acrylic acid
          2.3.1.5.6.5.1 Overview
          2.3.1.5.6.5.2 Applications
          2.3.1.5.6.5.3 Global production
        2.3.1.5.6.6 1,3-Propanediol (1,3-PDO)
          2.3.1.5.6.6.1 Overview
          2.3.1.5.6.6.2 Applications
          2.3.1.5.6.6.3 Global production
      2.3.1.5.7 Succinic Acid
        2.3.1.5.7.1 Overview
        2.3.1.5.7.2 Sources
        2.3.1.5.7.3 Applications
        2.3.1.5.7.4 Global production
        2.3.1.5.7.5 1,4-Butanediol (1,4-BDO)
          2.3.1.5.7.5.1 Overview
          2.3.1.5.7.5.2 Applications
          2.3.1.5.7.5.3 Gobal production
        2.3.1.5.7.6 Tetrahydrofuran (THF)
          2.3.1.5.7.6.1 Overview
          2.3.1.5.7.6.2 Applications
          2.3.1.5.7.6.3 Global production
      2.3.1.5.8 Adipic acid
        2.3.1.5.8.1 Overview
        2.3.1.5.8.2 Applications
        2.3.1.5.8.3 Caprolactame
          2.3.1.5.8.3.1 Overview
          2.3.1.5.8.3.2 Applications
          2.3.1.5.8.3.3 Global production
      2.3.1.5.9 Isobutanol
        2.3.1.5.9.1 Overview
        2.3.1.5.9.2 Sources
        2.3.1.5.9.3 Applications
        2.3.1.5.9.4 Global production
        2.3.1.5.9.5 p-Xylene
          2.3.1.5.9.5.1 Overview
          2.3.1.5.9.5.2 Sources
          2.3.1.5.9.5.3 Applications
          2.3.1.5.9.5.4 Global production
          2.3.1.5.9.5.5 Terephthalic acid
          2.3.1.5.9.5.6 Overview
      2.3.1.5.10 1,3 Proppanediol
        2.3.1.5.10.1 Overview
        2.3.1.5.10.2 Sources
        2.3.1.5.10.3 Applications
        2.3.1.5.10.4 Global production
      2.3.1.5.11 Monoethylene glycol (MEG)
        2.3.1.5.11.1 Overview
        2.3.1.5.11.2 Sources
        2.3.1.5.11.3 Applications
        2.3.1.5.11.4 Global production
      2.3.1.5.12 Ethanol
        2.3.1.5.12.1 Overview
        2.3.1.5.12.2 Sources
        2.3.1.5.12.3 Applications
        2.3.1.5.12.4 Global production
        2.3.1.5.12.5 Ethylene
          2.3.1.5.12.5.1 Overview
          2.3.1.5.12.5.2 Applications
          2.3.1.5.12.5.3 Global production
          2.3.1.5.12.5.4 Propylene
          2.3.1.5.12.5.5 Vinyl chloride
        2.3.1.5.12.6 Methly methacrylate
  2.3.2 SUGAR CROPS
    2.3.2.1 Saccharose
      2.3.2.1.1 Aniline
        2.3.2.1.1.1 Overview
        2.3.2.1.1.2 Applications
        2.3.2.1.1.3 Global production
      2.3.2.1.2 Fructose
        2.3.2.1.2.1 Overview
        2.3.2.1.2.2 Applications
        2.3.2.1.2.3 Global production
        2.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF)
          2.3.2.1.2.4.1 Overview
          2.3.2.1.2.4.2 Applications
          2.3.2.1.2.4.3 Global production
        2.3.2.1.2.5 5-Chloromethylfurfural (5-CMF)
          2.3.2.1.2.5.1 Overview
          2.3.2.1.2.5.2 Applications
          2.3.2.1.2.5.3 Global production
        2.3.2.1.2.6 Levulinic Acid
          2.3.2.1.2.6.1 Overview
          2.3.2.1.2.6.2 Applications
          2.3.2.1.2.6.3 Global production
        2.3.2.1.2.7 FDME
          2.3.2.1.2.7.1 Overview
          2.3.2.1.2.7.2 Applications
          2.3.2.1.2.7.3 Global production
        2.3.2.1.2.8 2,5-FDCA
          2.3.2.1.2.8.1 Overview
          2.3.2.1.2.8.2 Applications
          2.3.2.1.2.8.3 Global production
  2.3.3 LIGNOCELLULOSIC BIOMASS
    2.3.3.1 Levoglucosenone
      2.3.3.1.1 Overview
      2.3.3.1.2 Applications
      2.3.3.1.3 Global production
    2.3.3.2 Hemicellulose
      2.3.3.2.1 Overview
      2.3.3.2.2 Biochemicals from hemicellulose
      2.3.3.2.3 Global production
      2.3.3.2.4 Furfural
        2.3.3.2.4.1 Overview
        2.3.3.2.4.2 Applications
        2.3.3.2.4.3 Global production
        2.3.3.2.4.4 Furfuyl alcohol
          2.3.3.2.4.4.1 Overview
          2.3.3.2.4.4.2 Applications
          2.3.3.2.4.4.3 Global production
    2.3.3.3 Lignin
      2.3.3.3.1 Overview
      2.3.3.3.2 Sources
      2.3.3.3.3 Applications
        2.3.3.3.3.1 Aromatic compounds
          2.3.3.3.3.1.1 Benzene, toluene and xylene
          2.3.3.3.3.1.2 Phenol and phenolic resins
          2.3.3.3.3.1.3 Vanillin
        2.3.3.3.3.2 Polymers
      2.3.3.3.4 Global production
  2.3.4 PLANT OILS
    2.3.4.1 Overview
    2.3.4.2 Glycerol
      2.3.4.2.1 Overview
      2.3.4.2.2 Applications
      2.3.4.2.3 Global production
      2.3.4.2.4 MPG
        2.3.4.2.4.1 Overview
        2.3.4.2.4.2 Applications
        2.3.4.2.4.3 Global production
      2.3.4.2.5 ECH
        2.3.4.2.5.1 Overview
        2.3.4.2.5.2 Applications
        2.3.4.2.5.3 Global production
    2.3.4.3 Fatty acids
      2.3.4.3.1 Overview
      2.3.4.3.2 Applications
      2.3.4.3.3 Global production
    2.3.4.4 Castor oil
      2.3.4.4.1 Overview
      2.3.4.4.2 Sebacic acid
        2.3.4.4.2.1 Overview
        2.3.4.4.2.2 Applications
        2.3.4.4.2.3 Global production
      2.3.4.4.3 11-Aminoundecanoic acid (11-AA)
        2.3.4.4.3.1 Overview
        2.3.4.4.3.2 Applications
        2.3.4.4.3.3 Global production
    2.3.4.5 Dodecanedioic acid (DDDA)
      2.3.4.5.1 Overview
      2.3.4.5.2 Applications
      2.3.4.5.3 Global production
    2.3.4.6 Pentamethylene diisocyanate
      2.3.4.6.1 Overview
      2.3.4.6.2 Applications
      2.3.4.6.3 Global production
  2.3.5 NON-EDIBIBLE MILK
    2.3.5.1 Casein
      2.3.5.1.1 Overview
      2.3.5.1.2 Applications
      2.3.5.1.3 Global production
2.4 WASTE
  2.4.1 Food waste
    2.4.1.1 Overview
    2.4.1.2 Products and applications
      2.4.1.2.1 Global production
  2.4.2 Agricultural waste
    2.4.2.1 Overview
    2.4.2.2 Products and applications
    2.4.2.3 Global production
  2.4.3 Forestry waste
    2.4.3.1 Overview
    2.4.3.2 Products and applications
    2.4.3.3 Global production
  2.4.4 Aquaculture/fishing waste
    2.4.4.1 Overview
    2.4.4.2 Products and applications
    2.4.4.3 Global production
  2.4.5 Municipal solid waste
    2.4.5.1 Overview
    2.4.5.2 Products and applications
    2.4.5.3 Global production
  2.4.6 Industrial waste
    2.4.6.1 Overview
  2.4.7 Waste oils
    2.4.7.1 Overview
    2.4.7.2 Products and applications
    2.4.7.3 Global production
2.5 MICROBIAL & MINERAL SOURCES
  2.5.1 Microalgae
    2.5.1.1 Overview
    2.5.1.2 Products and applications
    2.5.1.3 Global production
  2.5.2 Macroalgae
    2.5.2.1 Overview
    2.5.2.2 Products and applications
    2.5.2.3 Global production
  2.5.3 Mineral sources
    2.5.3.1 Overview
    2.5.3.2 Products and applications
2.6 GASEOUS
  2.6.1 Biogas
    2.6.1.1 Overview
    2.6.1.2 Products and applications
    2.6.1.3 Global production
  2.6.2 Syngas
    2.6.2.1 Overview
    2.6.2.2 Products and applications
    2.6.2.3 Global production
  2.6.3 Off gases - fermentation CO2, CO
    2.6.3.1 Overview
    2.6.3.2 Products and applications
2.7 COMPANY PROFILES 140 (115 company profiles)

3 BIO-BASED PLASTICS MARKET

3.1 BIO-BASED OR RENEWABLE PLASTICS
  3.1.1 Drop-in bio-based plastics
  3.1.2 Novel bio-based plastics
3.2 BIODEGRADABLE AND COMPOSTABLE PLASTICS
  3.2.1 Biodegradability
  3.2.2 Compostability
3.3 TYPES
3.4 KEY MARKET PLAYERS
3.5 SYNTHETIC BIO-BASED POLYMERS
  3.5.1 Polylactic acid (Bio-PLA)
    3.5.1.1 Market analysis
    3.5.1.2 Production
    3.5.1.3 Producers and production capacities, current and planned
      3.5.1.3.1 Lactic acid producers and production capacities
      3.5.1.3.2 PLA producers and production capacities
      3.5.1.3.3 Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes)
  3.5.2 Polyethylene terephthalate (Bio-PET)
    3.5.2.1 Market analysis
    3.5.2.2 Producers and production capacities
    3.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes)
  3.5.3 Polytrimethylene terephthalate (Bio-PTT)
    3.5.3.1 Market analysis
    3.5.3.2 Producers and production capacities
    3.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes)
  3.5.4 Polyethylene furanoate (Bio-PEF)
    3.5.4.1 Market analysis
    3.5.4.2 Comparative properties to PET
    3.5.4.3 Producers and production capacities
      3.5.4.3.1 FDCA and PEF producers and production capacities
      3.5.4.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes).
  3.5.5 Polyamides (Bio-PA)
    3.5.5.1 Market analysis
    3.5.5.2 Producers and production capacities
    3.5.5.3 Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes)
  3.5.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    3.5.6.1 Market analysis
    3.5.6.2 Producers and production capacities
    3.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes)
  3.5.7 Polybutylene succinate (PBS) and copolymers
    3.5.7.1 Market analysis
    3.5.7.2 Producers and production capacities
    3.5.7.3 Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes)
  3.5.8 Polyethylene (Bio-PE)
    3.5.8.1 Market analysis
    3.5.8.2 Producers and production capacities
    3.5.8.3 Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes).
  3.5.9 Polypropylene (Bio-PP)
    3.5.9.1 Market analysis
    3.5.9.2 Producers and production capacities
    3.5.9.3 Polypropylene (Bio-PP) production 2019-2034 (1,000 tonnes)
3.6 NATURAL BIO-BASED POLYMERS
  3.6.1 Polyhydroxyalkanoates (PHA)
    3.6.1.1 Technology description
    3.6.1.2 Types
      3.6.1.2.1 PHB
      3.6.1.2.2 PHBV
    3.6.1.3 Synthesis and production processes
    3.6.1.4 Market analysis
    3.6.1.5 Commercially available PHAs
    3.6.1.6 Markets for PHAs
      3.6.1.6.1 Packaging
      3.6.1.6.2 Cosmetics
        3.6.1.6.2.1 PHA microspheres
      3.6.1.6.3 Medical
        3.6.1.6.3.1 Tissue engineering
        3.6.1.6.3.2 Drug delivery
      3.6.1.6.4 Agriculture
        3.6.1.6.4.1 Mulch film
        3.6.1.6.4.2 Grow bags
    3.6.1.7 Producers and production capacities
    3.6.1.8 PHA production capacities 2019-2034 (1,000 tonnes)
  3.6.2 Cellulose
    3.6.2.1 Microfibrillated cellulose (MFC)
      3.6.2.1.1 Market analysis
      3.6.2.1.2 Producers and production capacities
    3.6.2.2 Nanocellulose
      3.6.2.2.1 Cellulose nanocrystals
        3.6.2.2.1.1 Synthesis
        3.6.2.2.1.2 Properties
        3.6.2.2.1.3 Production
        3.6.2.2.1.4 Applications
        3.6.2.2.1.5 Market analysis
        3.6.2.2.1.6 Producers and production capacities
      3.6.2.2.2 Cellulose nanofibers
        3.6.2.2.2.1 Applications
        3.6.2.2.2.2 Market analysis
        3.6.2.2.2.3 Producers and production capacities
      3.6.2.2.3 Bacterial Nanocellulose (BNC)
        3.6.2.2.3.1 Production
        3.6.2.2.3.2 Applications
  3.6.3 Protein-based bioplastics
    3.6.3.1 Types, applications and producers
  3.6.4 Algal and fungal
    3.6.4.1 Algal
      3.6.4.1.1 Advantages
      3.6.4.1.2 Production
      3.6.4.1.3 Producers
    3.6.4.2 Mycelium
      3.6.4.2.1 Properties
      3.6.4.2.2 Applications
      3.6.4.2.3 Commercialization
  3.6.5 Chitosan
    3.6.5.1 Technology description
3.7 PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION
  3.7.1 North America
  3.7.2 Europe
  3.7.3 Asia-Pacific
    3.7.3.1 China
    3.7.3.2 Japan
    3.7.3.3 Thailand
    3.7.3.4 Indonesia
  3.7.4 Latin America
3.8 MARKET SEGMENTATION OF BIOPLASTICS
  3.8.1 Packaging
    3.8.1.1 Processes for bioplastics in packaging
    3.8.1.2 Applications
    3.8.1.3 Flexible packaging
      3.8.1.3.1 Production volumes 2019-2034
    3.8.1.4 Rigid packaging
      3.8.1.4.1 Production volumes 2019-2034
  3.8.2 Consumer products
    3.8.2.1 Applications
    3.8.2.2 Production volumes 2019-2034
  3.8.3 Automotive
    3.8.3.1 Applications
    3.8.3.2 Production volumes 2019-2034
  3.8.4 Building & construction
    3.8.4.1 Applications
    3.8.4.2 Production volumes 2019-2034
  3.8.5 Textiles
    3.8.5.1 Apparel
    3.8.5.2 Footwear
    3.8.5.3 Medical textiles
    3.8.5.4 Production volumes 2019-2034
  3.8.6 Electronics
    3.8.6.1 Applications
    3.8.6.2 Production volumes 2019-2034
  3.8.7 Agriculture and horticulture
    3.8.7.1 Production volumes 2019-2034
3.9 NATURAL FIBERS
  3.9.1 Manufacturing method, matrix materials and applications of natural fibers
  3.9.2 Advantages of natural fibers
  3.9.3 Commercially available next-gen natural fiber products
  3.9.4 Market drivers for next-gen natural fibers
  3.9.5 Challenges
  3.9.6 Plants (cellulose, lignocellulose)
    3.9.6.1 Seed fibers
      3.9.6.1.1 Cotton
        3.9.6.1.1.1 Production volumes 2018-2034
      3.9.6.1.2 Kapok
        3.9.6.1.2.1 Production volumes 2018-2034
      3.9.6.1.3 Luffa
    3.9.6.2 Bast fibers
      3.9.6.2.1 Jute
      3.9.6.2.2 Production volumes 2018-2034
        3.9.6.2.2.1 Hemp
        3.9.6.2.2.2 Production volumes 2018-2034
      3.9.6.2.3 Flax
        3.9.6.2.3.1 Production volumes 2018-2034
      3.9.6.2.4 Ramie
        3.9.6.2.4.1 Production volumes 2018-2034
      3.9.6.2.5 Kenaf
        3.9.6.2.5.1 Production volumes 2018-2034
    3.9.6.3 Leaf fibers
      3.9.6.3.1 Sisal
        3.9.6.3.1.1 Production volumes 2018-2034
      3.9.6.3.2 Abaca
        3.9.6.3.2.1 Production volumes 2018-2034
    3.9.6.4 Fruit fibers
      3.9.6.4.1 Coir
        3.9.6.4.1.1 Production volumes 2018-2034
      3.9.6.4.2 Banana
        3.9.6.4.2.1 Production volumes 2018-2034
      3.9.6.4.3 Pineapple
    3.9.6.5 Stalk fibers from agricultural residues
      3.9.6.5.1 Rice fiber
      3.9.6.5.2 Corn
    3.9.6.6 Cane, grasses and reed
      3.9.6.6.1 Switch grass
      3.9.6.6.2 Sugarcane (agricultural residues)
      3.9.6.6.3 Bamboo
        3.9.6.6.3.1 Production volumes 2018-2034
      3.9.6.6.4 Fresh grass (green biorefinery)
  3.9.7 Animal (fibrous protein)
    3.9.7.1 Wool
      3.9.7.1.1 Alternative wool materials
      3.9.7.1.2 Producers
    3.9.7.2 Silk fiber
      3.9.7.2.1 Alternative silk materials
        3.9.7.2.1.1 Producers
    3.9.7.3 Leather
      3.9.7.3.1 Alternative leather materials
        3.9.7.3.1.1 Producers
    3.9.7.4 Fur
      3.9.7.4.1 Producers
    3.9.7.5 Down
      3.9.7.5.1 Alternative down materials
        3.9.7.5.1.1 Producers
  3.9.8 Markets for natural fibers
    3.9.8.1 Composites
    3.9.8.2 Applications
    3.9.8.3 Natural fiber injection moulding compounds
      3.9.8.3.1 Properties
      3.9.8.3.2 Applications
    3.9.8.4 Non-woven natural fiber mat composites
      3.9.8.4.1 Automotive
      3.9.8.4.2 Applications
    3.9.8.5 Aligned natural fiber-reinforced composites
    3.9.8.6 Natural fiber biobased polymer compounds
    3.9.8.7 Natural fiber biobased polymer non-woven mats
      3.9.8.7.1 Flax
      3.9.8.7.2 Kenaf
    3.9.8.8 Natural fiber thermoset bioresin composites
    3.9.8.9 Aerospace
      3.9.8.9.1 Market overview
    3.9.8.10 Automotive
      3.9.8.10.1 Market overview
      3.9.8.10.2 Applications of natural fibers
    3.9.8.11 Building/construction
      3.9.8.11.1 Market overview
      3.9.8.11.2 Applications of natural fibers
    3.9.8.12 Sports and leisure
      3.9.8.12.1 Market overview
    3.9.8.13 Textiles
      3.9.8.13.1 Market overview
      3.9.8.13.2 Consumer apparel
      3.9.8.13.3 Geotextiles
    3.9.8.14 Packaging
      3.9.8.14.1 Market overview
  3.9.9 Global production of natural fibers
    3.9.9.1 Overall global fibers market
    3.9.9.2 Plant-based fiber production
    3.9.9.3 Animal-based natural fiber production
3.10 LIGNIN
  3.10.1 Introduction
    3.10.1.1 What is lignin?
      3.10.1.1.1 Lignin structure
    3.10.1.2 Types of lignin
      3.10.1.2.1 Sulfur containing lignin
      3.10.1.2.2 Sulfur-free lignin from biorefinery process
    3.10.1.3 Properties
    3.10.1.4 The lignocellulose biorefinery
    3.10.1.5 Markets and applications
    3.10.1.6 Challenges for using lignin
  3.10.2 Lignin production processes
    3.10.2.1 Lignosulphonates
    3.10.2.2 Kraft Lignin
      3.10.2.2.1 LignoBoost process
      3.10.2.2.2 LignoForce method
      3.10.2.2.3 Sequential Liquid Lignin Recovery and Purification
      3.10.2.2.4 A-Recovery+
    3.10.2.3 Soda lignin
    3.10.2.4 Biorefinery lignin
      3.10.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes
    3.10.2.5 Organosolv lignins
    3.10.2.6 Hydrolytic lignin
  3.10.3 Markets for lignin
    3.10.3.1 Market drivers and trends for lignin
    3.10.3.2 Production capacities
      3.10.3.2.1 Technical lignin availability (dry ton/y)
      3.10.3.2.2 Biomass conversion (Biorefinery)
    3.10.3.3 Estimated consumption of lignin
    3.10.3.4 Prices
    3.10.3.5 Heat and power energy
    3.10.3.6 Pyrolysis and syngas
    3.10.3.7 Aromatic compounds
      3.10.3.7.1 Benzene, toluene and xylene
      3.10.3.7.2 Phenol and phenolic resins
      3.10.3.7.3 Vanillin
    3.10.3.8 Plastics and polymers
3.11 COMPANY PROFILES 377 (516 company profiles)

4 REFERENCES


LIST OF TABLES

Table 1. Plant-based feedstocks and biochemicals produced.
Table 2. Waste-based feedstocks and biochemicals produced.
Table 3. Microbial and mineral-based feedstocks and biochemicals produced.
Table 4. Common starch sources that can be used as feedstocks for producing biochemicals.
Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals.
Table 6. Applications of lysine as a feedstock for biochemicals.
Table 7. HDMA sources that can be used as feedstocks for producing biochemicals.
Table 8. Applications of bio-based HDMA.
Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).
Table 10. Applications of DN5.
Table 11. Biobased feedstocks for isosorbide.
Table 12. Applications of bio-based isosorbide.
Table 13. Lactide applications.
Table 14. Biobased feedstock sources for itaconic acid.
Table 15. Applications of bio-based itaconic acid.
Table 16. Biobased feedstock sources for 3-HP.
Table 17. Applications of 3-HP.
Table 18. Applications of bio-based acrylic acid.
Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO).
Table 20. Biobased feedstock sources for Succinic acid.
Table 21. Applications of succinic acid.
Table 22. Applications of bio-based 1,4-Butanediol (BDO).
Table 23. Applications of bio-based Tetrahydrofuran (THF).
Table 24. Applications of bio-based adipic acid.
Table 25. Applications of bio-based caprolactam.
Table 26. Biobased feedstock sources for isobutanol.
Table 27. Applications of bio-based isobutanol.
Table 28. Biobased feedstock sources for p-Xylene.
Table 29. Applications of bio-based p-Xylene.
Table 30. Applications of bio-based Terephthalic acid (TPA).
Table 31. Biobased feedstock sources for 1,3 Proppanediol.
Table 32. Applications of bio-based 1,3 Proppanediol.
Table 33. Biobased feedstock sources for MEG.
Table 34. Applications of bio-based MEG.
Table 35. Biobased MEG producers capacities.
Table 36. Biobased feedstock sources for ethanol.
Table 37. Applications of bio-based ethanol.
Table 38. Applications of bio-based ethylene.
Table 39. Applications of bio-based propylene.
Table 40. Applications of bio-based vinyl chloride.
Table 41. Applications of bio-based Methly methacrylate.
Table 42. Applications of bio-based aniline.
Table 43. Applications of biobased fructose.
Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF).
Table 45. Applications of 5-(Chloromethyl)furfural (CMF).
Table 46. Applications of Levulinic acid.
Table 47. Markets and applications for bio-based FDME.
Table 48. Applications of FDCA.
Table 49. Markets and applications for bio-based levoglucosenone.
Table 50. Biochemicals derived from hemicellulose
Table 51. Markets and applications for bio-based hemicellulose
Table 52. Markets and applications for bio-based furfuryl alcohol.
Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 54. Lignin aromatic compound products.
Table 55. Prices of benzene, toluene, xylene and their derivatives.
Table 56. Lignin products in polymeric materials.
Table 57. Application of lignin in plastics and composites.
Table 58. Markets and applications for bio-based glycerol.
Table 59. Markets and applications for Bio-based MPG.
Table 60. Markets and applications: Bio-based ECH.
Table 61. Mineral source products and applications.
Table 62. Type of biodegradation.
Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics.
Table 64. Types of Bio-based and/or Biodegradable Plastics, applications.
Table 65. Key market players by Bio-based and/or Biodegradable Plastic types.
Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.
Table 67. Lactic acid producers and production capacities.
Table 68. PLA producers and production capacities.
Table 69. Planned PLA capacity expansions in China.
Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.
Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.
Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.
Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.
Table 75. PEF vs. PET.
Table 76. FDCA and PEF producers.
Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.
Table 78. Leading Bio-PA producers production capacities.
Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.
Table 80. Leading PBAT producers, production capacities and brands.
Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.
Table 82. Leading PBS producers and production capacities.
Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.
Table 84. Leading Bio-PE producers.
Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.
Table 86. Leading Bio-PP producers and capacities.
Table 87.Types of PHAs and properties.
Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.
Table 89. Polyhydroxyalkanoate (PHA) extraction methods.
Table 90. Polyhydroxyalkanoates (PHA) market analysis.
Table 91. Commercially available PHAs.
Table 92. Markets and applications for PHAs.
Table 93. Applications, advantages and disadvantages of PHAs in packaging.
Table 94. Polyhydroxyalkanoates (PHA) producers.
Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.
Table 96. Leading MFC producers and capacities.
Table 97. Synthesis methods for cellulose nanocrystals (CNC).
Table 98. CNC sources, size and yield.
Table 99. CNC properties.
Table 100. Mechanical properties of CNC and other reinforcement materials.
Table 101. Applications of nanocrystalline cellulose (NCC).
Table 102. Cellulose nanocrystals analysis.
Table 103: Cellulose nanocrystal production capacities and production process, by producer.
Table 104. Applications of cellulose nanofibers (CNF).
Table 105. Cellulose nanofibers market analysis.
Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.
Table 107. Applications of bacterial nanocellulose (BNC).
Table 108. Types of protein based-bioplastics, applications and companies.
Table 109. Types of algal and fungal based-bioplastics, applications and companies.
Table 110. Overview of alginate-description, properties, application and market size.
Table 111. Companies developing algal-based bioplastics.
Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications.
Table 113. Companies developing mycelium-based bioplastics.
Table 114. Overview of chitosan-description, properties, drawbacks and applications.
Table 115. Global production capacities of biobased and sustainable plastics in 2019-2034, by region, 1,000 tonnes.
Table 116. Biobased and sustainable plastics producers in North America.
Table 117. Biobased and sustainable plastics producers in Europe.
Table 118. Biobased and sustainable plastics producers in Asia-Pacific.
Table 119. Biobased and sustainable plastics producers in Latin America.
Table 120. Processes for bioplastics in packaging.
Table 121. Comparison of bioplastics (PLA and PHAs) properties to other common polymers used in product packaging.
Table 122. Typical applications for bioplastics in flexible packaging.
Table 123. Typical applications for bioplastics in rigid packaging.
Table 124. Types of next-gen natural fibers.
Table 125. Application, manufacturing method, and matrix materials of natural fibers.
Table 126. Typical properties of natural fibers.
Table 127. Commercially available next-gen natural fiber products.
Table 128. Market drivers for natural fibers.
Table 129. Overview of cotton fibers-description, properties, drawbacks and applications.
Table 130. Overview of kapok fibers-description, properties, drawbacks and applications.
Table 131. Overview of luffa fibers-description, properties, drawbacks and applications.
Table 132. Overview of jute fibers-description, properties, drawbacks and applications.
Table 133. Overview of hemp fibers-description, properties, drawbacks and applications.
Table 134. Overview of flax fibers-description, properties, drawbacks and applications.
Table 135. Overview of ramie fibers- description, properties, drawbacks and applications.
Table 136. Overview of kenaf fibers-description, properties, drawbacks and applications.
Table 137. Overview of sisal leaf fibers-description, properties, drawbacks and applications.
Table 138. Overview of abaca fibers-description, properties, drawbacks and applications.
Table 139. Overview of coir fibers-description, properties, drawbacks and applications.
Table 140. Overview of banana fibers-description, properties, drawbacks and applications.
Table 141. Overview of pineapple fibers-description, properties, drawbacks and applications.
Table 142. Overview of rice fibers-description, properties, drawbacks and applications.
Table 143. Overview of corn fibers-description, properties, drawbacks and applications.
Table 144. Overview of switch grass fibers-description, properties and applications.
Table 145. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.
Table 146. Overview of bamboo fibers-description, properties, drawbacks and applications.
Table 147. Overview of wool fibers-description, properties, drawbacks and applications.
Table 148. Alternative wool materials producers.
Table 149. Overview of silk fibers-description, properties, application and market size.
Table 150. Alternative silk materials producers.
Table 151. Alternative leather materials producers.
Table 152. Next-gen fur producers.
Table 153. Alternative down materials producers.
Table 154. Applications of natural fiber composites.
Table 155. Typical properties of short natural fiber-thermoplastic composites.
Table 156. Properties of non-woven natural fiber mat composites.
Table 157. Properties of aligned natural fiber composites.
Table 158. Properties of natural fiber-bio-based polymer compounds.
Table 159. Properties of natural fiber-bio-based polymer non-woven mats.
Table 160. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use.
Table 161. Natural fiber-reinforced polymer composite in the automotive market.
Table 162. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use.
Table 163. Applications of natural fibers in the automotive industry.
Table 164. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.
Table 165. Applications of natural fibers in the building/construction sector.
Table 166. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.
Table 167. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.
Table 168. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use.
Table 169. Technical lignin types and applications.
Table 170. Classification of technical lignins.
Table 171. Lignin content of selected biomass.
Table 172. Properties of lignins and their applications.
Table 173. Example markets and applications for lignin.
Table 174. Processes for lignin production.
Table 175. Biorefinery feedstocks.
Table 176. Comparison of pulping and biorefinery lignins.
Table 177. Commercial and pre-commercial biorefinery lignin production facilities and processes
Table 178. Market drivers and trends for lignin.
Table 179. Production capacities of technical lignin producers.
Table 180. Production capacities of biorefinery lignin producers.
Table 181. Estimated consumption of lignin, 2019-2034 (000 MT).
Table 182. Prices of benzene, toluene, xylene and their derivatives.
Table 183. Application of lignin in plastics and polymers.
Table 184. Lactips plastic pellets.
Table 185. Oji Holdings CNF products.

LIST OF FIGURES

Figure 1. Schematic of biorefinery processes.
Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2034 (million metric tonnes).
Figure 3. Global production of biobased lysine, 2018-2034 (metric tonnes).
Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2034 (million metric tonnes).
Figure 5. Global production volumes of bio-HMDA, 2018 to 2034 in metric tonnes.
Figure 6. Global production of bio-based DN5, 2018-2034 (metric tonnes).
Figure 7. Global production of bio-based isosorbide, 2018-2034 (metric tonnes).
Figure 8. L-lactic acid (L-LA) production, 2018-2034 (metric tonnes).
Figure 9. Global lactide production, 2018-2034 (metric tonnes).
Figure 10. Global production of bio-itaconic acid, 2018-2034 (metric tonnes).
Figure 11. Global production of 3-HP, 2018-2034 (metric tonnes).
Figure 12. Global production of bio-based acrylic acid, 2018-2034 (metric tonnes).
Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2034 (metric tonnes).
Figure 14. Global production of bio-based Succinic acid, 2018-2034 (metric tonnes).
Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2034 (metric tonnes).
Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2034 (metric tonnes).
Figure 17. Overview of Toray process.
Figure 18. Global production of bio-based caprolactam, 2018-2034 (metric tonnes).
Figure 19. Global production of bio-based isobutanol, 2018-2034 (metric tonnes).
Figure 20. Global production of bio-based p-xylene, 2018-2034 (metric tonnes).
Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2034 (metric tonnes).
Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2034 (metric tonnes).
Figure 23. Global production of biobased MEG, 2018-2034 (metric tonnes).
Figure 24. Global production of biobased ethanol, 2018-2034 (million metric tonnes).
Figure 25. Global production of biobased ethylene, 2018-2034 (million metric tonnes).
Figure 26. Global production of biobased propylene, 2018-2034 (metric tonnes).
Figure 27. Global production of biobased vinyl chloride, 2018-2034 (metric tonnes).
Figure 28. Global production of bio-based Methly methacrylate, 2018-2034 (metric tonnes).
Figure 29. Global production of biobased aniline, 2018-2034 (metric tonnes).
Figure 30. Global production of biobased fructose, 2018-2034 (metric tonnes).
Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2034 (metric tonnes).
Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2034 (metric tonnes).
Figure 33. Global production of biobased Levulinic acid, 2018-2034 (metric tonnes).
Figure 34. Global production of biobased FDME, 2018-2034 (metric tonnes).
Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2034 (metric tonnes).
Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2034 in metric tonnes:
Figure 37. Global production of hemicellulose, 2018-2034 (metric tonnes).
Figure 38. Global production of biobased furfural, 2018-2034 (metric tonnes).
Figure 39. Global production of biobased furfuryl alcohol, 2018-2034 (metric tonnes).
Figure 40. Schematic of WISA plywood home.
Figure 41. Global production of biobased lignin, 2018-2034 (metric tonnes).
Figure 42. Global production of biobased glycerol, 2018-2034 (metric tonnes).
Figure 43. Global production of Bio-MPG, 2018-2034 (metric tonnes).
Figure 44. Global production of biobased ECH, 2018-2034 (metric tonnes).
Figure 45. Global production of biobased fatty acids, 2018-2034 (million metric tonnes).
Figure 46. Global production of biobased sebacic acid, 2018-2034 (metric tonnes).
Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2034 (metric tonnes).
Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2034 (metric tonnes).
Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2034 (metric tonnes).
Figure 50. Global production of biobased casein, 2018-2034 (metric tonnes).
Figure 51. Global production of food waste for biochemicals, 2018-2034 (million metric tonnes).
Figure 52. Global production of agricultural waste for biochemicals, 2018-2034 (million metric tonnes).
Figure 53. Global production of forestry waste for biochemicals, 2018-2034 (million metric tonnes).
Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2034 (million metric tonnes).
Figure 55. Global production of municipal solid waste for biochemicals, 2018-2034 (million metric tonnes).
Figure 56. Global production of waste oils for biochemicals, 2018-2034 (million metric tonnes).
Figure 57. Global microalgae production, 2018-2034 (million metric tonnes).
Figure 58. Global macroalgae production, 2018-2034 (million metric tonnes).
Figure 59. Global production of biogas, 2018-2034 (billion m3).
Figure 60. Global production of syngas, 2018-2034 (billion m3).
Figure 61. formicobio technology.
Figure 62. Domsjo process.
Figure 63. TMP-Bio Process.
Figure 64. Lignin gel.
Figure 65. BioFlex process.
Figure 66. LX Process.
Figure 67. METNIN Lignin refining technology.
Figure 68. Enfinity cellulosic ethanol technology process.
Figure 69. Precision Photosynthesis technology.
Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 71. UPM biorefinery process.
Figure 72. The Proesa Process.
Figure 73. Goldilocks process and applications.
Figure 74. Coca-Cola PlantBottle .
Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.
Figure 76. Polylactic acid (Bio-PLA) production 2019-2034 (1,000 tonnes).
Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2034 (1,000 tonnes)
Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2034 (1,000 tonnes).
Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.
Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2034 (1,000 tonnes).
Figure 81. Polyamides (Bio-PA) production 2019-2034 (1,000 tonnes).
Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2034 (1,000 tonnes).
Figure 83. Polybutylene succinate (PBS) production 2019-2034 (1,000 tonnes).
Figure 84. Polyethylene (Bio-PE) production 2019-2034 (1,000 tonnes).
Figure 85. Polypropylene (Bio-PP) production capacities 2019-2034 (1,000 tonnes).
Figure 86. PHA family.
Figure 87. PHA production capacities 2019-2034 (1,000 tonnes).
Figure 88. TEM image of cellulose nanocrystals.
Figure 89. CNC preparation.
Figure 90. Extracting CNC from trees.
Figure 91. CNC slurry.
Figure 92. CNF gel.
Figure 93. Bacterial nanocellulose shapes
Figure 94. BLOOM masterbatch from Algix.
Figure 95. Typical structure of mycelium-based foam.
Figure 96. Commercial mycelium composite construction materials.
Figure 97. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes.
Figure 98. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tonnes.
Figure 99. PHA bioplastics products.
Figure 100. The global market for biobased and biodegradable plastics for flexible packaging 2019 2033 ( 000 tonnes).
Figure 101. Production volumes for bioplastics for rigid packaging, 2019 2033 ( 000 tonnes).
Figure 102. Global production for biobased and biodegradable plastics in consumer products 2019-2034, in 1,000 tonnes.
Figure 103. Global production capacities for biobased and biodegradable plastics in automotive 2019-2034, in 1,000 tonnes.
Figure 104. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2034, in 1,000 tonnes.
Figure 105. Global production volumes for biobased and biodegradable plastics in textiles 2019-2034, in 1,000 tonnes.
Figure 106. Global production volumes for biobased and biodegradable plastics in electronics 2019-2034, in 1,000 tonnes.
Figure 107. Biodegradable mulch films.
Figure 108. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2034, in 1,000 tonnes.
Figure 109. Types of natural fibers.
Figure 110. Absolut natural based fiber bottle cap.
Figure 111. Adidas algae-ink tees.
Figure 112. Carlsberg natural fiber beer bottle.
Figure 113. Miratex watch bands.
Figure 114. Adidas Made with Nature Ultraboost 22.
Figure 115. PUMA RE:SUEDE sneaker
Figure 116. Cotton production volume 2018-2034 (Million MT).
Figure 117. Kapok production volume 2018-2034 (MT).
Figure 118. Luffa cylindrica fiber.
Figure 119. Jute production volume 2018-2034 (Million MT).
Figure 120. Hemp fiber production volume 2018-2034 ( MT).
Figure 121. Flax fiber production volume 2018-2034 (MT).
Figure 122. Ramie fiber production volume 2018-2034 (MT).
Figure 123. Kenaf fiber production volume 2018-2034 (MT).
Figure 124. Sisal fiber production volume 2018-2034 (MT).
Figure 125. Abaca fiber production volume 2018-2034 (MT).
Figure 126. Coir fiber production volume 2018-2034 (MILLION MT).
Figure 127. Banana fiber production volume 2018-2034 (MT).
Figure 128. Pineapple fiber.
Figure 129. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019.
Figure 130. Bamboo fiber production volume 2018-2034 (MILLION MT).
Figure 131. Conceptual landscape of next-gen leather materials.
Figure 132. Hemp fibers combined with PP in car door panel.
Figure 133. Car door produced from Hemp fiber.
Figure 134. Mercedes-Benz components containing natural fibers.
Figure 135. AlgiKicks sneaker, made with the Algiknit biopolymer gel.
Figure 136. Coir mats for erosion control.
Figure 137. Global fiber production in 2022, by fiber type, million MT and %.
Figure 138. Global fiber production (million MT) to 2020-2034.
Figure 139. Plant-based fiber production 2018-2034, by fiber type, MT.
Figure 140. Animal based fiber production 2018-2034, by fiber type, million MT.
Figure 141. High purity lignin.
Figure 142. Lignocellulose architecture.
Figure 143. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.
Figure 144. The lignocellulose biorefinery.
Figure 145. LignoBoost process.
Figure 146. LignoForce system for lignin recovery from black liquor.
Figure 147. Sequential liquid-lignin recovery and purification (SLPR) system.
Figure 148. A-Recovery+ chemical recovery concept.
Figure 149. Schematic of a biorefinery for production of carriers and chemicals.
Figure 150. Organosolv lignin.
Figure 151. Hydrolytic lignin powder.
Figure 152. Estimated consumption of lignin, 2019-2034 (000 MT).
Figure 153. Pluumo.
Figure 154. ANDRITZ Lignin Recovery process.
Figure 155. Anpoly cellulose nanofiber hydrogel.
Figure 156. MEDICELLU .
Figure 157. Asahi Kasei CNF fabric sheet.
Figure 158. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
Figure 159. CNF nonwoven fabric.
Figure 160. Roof frame made of natural fiber.
Figure 161. Beyond Leather Materials product.
Figure 162. BIOLO e-commerce mailer bag made from PHA.
Figure 163. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.
Figure 164. Fiber-based screw cap.
Figure 165. formicobio technology.
Figure 166. nanoforest-S.
Figure 167. nanoforest-PDP.
Figure 168. nanoforest-MB.
Figure 169. sunliquid production process.
Figure 170. CuanSave film.
Figure 171. Celish.
Figure 172. Trunk lid incorporating CNF.
Figure 173. ELLEX products.
Figure 174. CNF-reinforced PP compounds.
Figure 175. Kirekira! toilet wipes.
Figure 176. Color CNF.
Figure 177. Rheocrysta spray.
Figure 178. DKS CNF products.
Figure 179. Domsjo process.
Figure 180. Mushroom leather.
Figure 181. CNF based on citrus peel.
Figure 182. Citrus cellulose nanofiber.
Figure 183. Filler Bank CNC products.
Figure 184. Fibers on kapok tree and after processing.
Figure 185. TMP-Bio Process.
Figure 186. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.
Figure 187. Water-repellent cellulose.
Figure 188. Cellulose Nanofiber (CNF) composite with polyethylene (PE).
Figure 189. PHA production process.
Figure 190. CNF products from Furukawa Electric.
Figure 191. AVAPTM process.
Figure 192. GreenPower+ process.
Figure 193. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
Figure 194. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).
Figure 195. CNF gel.
Figure 196. Block nanocellulose material.
Figure 197. CNF products developed by Hokuetsu.
Figure 198. Marine leather products.
Figure 199. Inner Mettle Milk products.
Figure 200. Kami Shoji CNF products.
Figure 201. Dual Graft System.
Figure 202. Engine cover utilizing Kao CNF composite resins.
Figure 203. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).
Figure 204. Kel Labs yarn.
Figure 205. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).
Figure 206. Lignin gel.
Figure 207. BioFlex process.
Figure 208. Nike Algae Ink graphic tee.
Figure 209. LX Process.
Figure 210. Made of Air's HexChar panels.
Figure 211. TransLeather.
Figure 212. Chitin nanofiber product.
Figure 213. Marusumi Paper cellulose nanofiber products.
Figure 214. FibriMa cellulose nanofiber powder.
Figure 215. METNIN Lignin refining technology.
Figure 216. IPA synthesis method.
Figure 217. MOGU-Wave panels.
Figure 218. CNF slurries.
Figure 219. Range of CNF products.
Figure 220. Reishi.
Figure 221. Compostable water pod.
Figure 222. Leather made from leaves.
Figure 223. Nike shoe with beLEAF .
Figure 224. CNF clear sheets.
Figure 225. Oji Holdings CNF polycarbonate product.
Figure 226. Enfinity cellulosic ethanol technology process.
Figure 227. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 228. XCNF.
Figure 229: Plantrose process.
Figure 230. LOVR hemp leather.
Figure 231. CNF insulation flat plates.
Figure 232. Hansa lignin.
Figure 233. Manufacturing process for STARCEL.
Figure 234. Manufacturing process for STARCEL.
Figure 235. 3D printed cellulose shoe.
Figure 236. Lyocell process.
Figure 237. North Face Spiber Moon Parka.
Figure 238. PANGAIA LAB NXT GEN Hoodie.
Figure 239. Spider silk production.
Figure 240. Stora Enso lignin battery materials.
Figure 241. 2 wt.% CNF suspension.
Figure 242. BiNFi-s Dry Powder.
Figure 243. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.
Figure 244. Silk nanofiber (right) and cocoon of raw material.
Figure 245. Sulapac cosmetics containers.
Figure 246. Sulzer equipment for PLA polymerization processing.
Figure 247. Solid Novolac Type lignin modified phenolic resins.
Figure 248. Teijin bioplastic film for door handles.
Figure 249. Corbion FDCA production process.
Figure 250. Comparison of weight reduction effect using CNF.
Figure 251. CNF resin products.
Figure 252. UPM biorefinery process.
Figure 253. Vegea production process.
Figure 254. The Proesa Process.
Figure 255. Goldilocks process and applications.
Figure 256. Visolis Hybrid Bio-Thermocatalytic Process.
Figure 257. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.
Figure 258. Worn Again products.
Figure 259. Zelfo Technology GmbH CNF production process.


More Publications