The Global Market for Advanced Bio-based and Sustainable Materials 2025-2035

December 2024 | 2329 pages | ID: GDC8068E456CEN
Future Markets, Inc.

US$ 1,850.00

E-mail Delivery (PDF), Hard Copy Mail Delivery

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
The global market for advanced bio-based and sustainable materials is experiencing rapid growth driven by increasing environmental concerns, regulatory pressure for sustainable solutions, and growing consumer demand for eco-friendly products. These materials are being developed to replace petroleum-based and other non-sustainable materials across multiple industries while offering improved environmental performance and circularity.

Key drivers include:
  • Push to reduce carbon emissions and environmental impact
  • Government regulations promoting sustainable materials
  • Corporate sustainability commitments
  • Consumer preference for eco-friendly products
  • Need for alternatives to petroleum-based materials
  • Advancement in production technologies
  • Investment in bio-based manufacturing
The market encompasses multiple material categories including bio-based chemicals, polymers, composites, and advanced materials for construction, packaging, textiles, and electronics applications. Current market size is estimated at over $100 billion and growing at 10-15% annually, with bio-based polymers and sustainable packaging representing the largest segments.

Significant opportunities exist in:
  • Drop-in replacements for petroleum-based chemicals
  • Novel bio-based polymers with enhanced properties
  • Natural fiber composites for automotive and construction
  • Sustainable building materials and green steel
  • Bio-based packaging solutions
  • Next-generation sustainable textiles
  • Electronics from renewable materials
The outlook remains highly positive as technologies mature and costs decrease. Growth is expected to accelerate as manufacturers increase adoption of sustainable materials to meet environmental goals and consumer demands. Asia Pacific represents the fastest growing market, while Europe leads in technology development and adoption.

This extensive 2200+ page report provides detailed market data and analysis of the rapidly growing advanced bio-based and sustainable materials market, covering bio-based chemicals, polymers, composites, construction materials, packaging, textiles, adhesives, and electronics applications. The report includes granular 10-year forecasts, competitive analysis of over 1,000 companies, and in-depth assessment of technologies, manufacturing processes, and end-use markets.

Key Report Features:
  • Comprehensive analysis of bio-based chemicals and intermediates including starch, glucose, lignin, and plant-based feedstocks
  • Detailed market sizing and forecasts for bio-based polymers and plastics including PLA, PHA, bio-PE, bio-PET
  • Assessment of natural fiber composites and wood composites market opportunities
  • Analysis of sustainable construction materials including bio-concrete, green steel, and thermal materials
  • Deep dive into bio-based packaging applications and markets
  • Coverage of sustainable textiles and bio-based leather alternatives
  • Evaluation of bio-based adhesives, coatings and electronic materials
  • Company profiles of over 1,000 companies developing advanced sustainable materials. Companies profiled include ADBioplastics, AlgiKnit, Allbirds Materials, Ananas Anam, Anellotech, Avantium, Basilisk, BASF, Blue Planet, Bluepha, Bolt Threads, Borealis, Braskem, Carbios, CarbonCure, Cargill, Cathay Biotech, CJ Biomaterials, Danimer Scientific, DuPont, Ecologic Brands, Ecovative, FlexSea, Futamura, Genomatica, GRECO, Helian Polymers BV, Huitong Biomaterials, Interface, Kaneka, Kingfa Science and Technology, Lactips, Loliware, MarinaTex, Modern Meadow, Mogu, Mushroom Packaging, MycoWorks, Natural Fiber Welding, NatureWorks, Newlight Technologies, Notpla, Novamont, Novozymes, Orange Fiber, Origin Materials, Ourobio, Paptic, Plantic Technologies, PlantSea, Prometheus Materials, Roquette, RWDC Industries, Solidia Technologies, Spinnova, Succinity, Sulapac, Sulzer, TerraVerdae Bioworks, Tipa Corp, Total Corbion, TotalEnergies Corbion, Trinseo, UPM, Vitrolabs, Wear Once, Xampla, Yield10 Bioscience, Zoa BioFabrics and more....
Detailed Coverage Includes:
  • Raw material sourcing and feedstock analysis
  • Production processes and manufacturing methods
  • Material properties and performance characteristics
  • End-use applications and market opportunities
  • Competitive landscape and company strategies
  • Technology roadmaps and future outlook
  • Regional market analysis
  • Regulatory considerations
  • Sustainability metrics and environmental impact
The report segments the market by:

Material Type:
  • Bio-based chemicals and intermediates
  • Bio-based polymers and plastics
  • Natural fiber composites
  • Sustainable construction materials
  • Bio-based packaging
  • Sustainable textiles
  • Bio-based adhesives and coatings
  • Sustainable electronics
  • End-Use Markets:
  • Packaging
  • Construction
  • Automotive
  • Textiles & Apparel
  • Electronics
  • Consumer Products
  • Industrial Applications
Geographic Regions:
  • North America
  • Europe
  • Asia Pacific
  • Rest of World
1 RESEARCH METHODOLOGY

2 INTRODUCTION

2.1 Definition of Sustainable and Bio-based Materials
2.2 Importance and Benefits of Bio-based and Sustainable Materials

3 BIOBASED CHEMICALS AND INTERMEDIATES

3.1 BIOREFINERIES
3.2 BIO-BASED FEEDSTOCK AND LAND USE
3.3 PLANT-BASED
  3.3.1 STARCH
    3.3.1.1 Overview
    3.3.1.2 Sources
    3.3.1.3 Global production
    3.3.1.4 Lysine
      3.3.1.4.1 Source
      3.3.1.4.2 Applications
      3.3.1.4.3 Global production
    3.3.1.5 Glucose
      3.3.1.5.1 HMDA
        3.3.1.5.1.1 Overview
        3.3.1.5.1.2 Sources
        3.3.1.5.1.3 Applications
        3.3.1.5.1.4 Global production
      3.3.1.5.2 1,5-diaminopentane (DA5)
        3.3.1.5.2.1 Overview
        3.3.1.5.2.2 Sources
        3.3.1.5.2.3 Applications
        3.3.1.5.2.4 Global production
      3.3.1.5.3 Sorbitol
        3.3.1.5.3.1 Isosorbide
          3.3.1.5.3.1.1 Overview
          3.3.1.5.3.1.2 Sources
          3.3.1.5.3.1.3 Applications
          3.3.1.5.3.1.4 Global production
      3.3.1.5.4 Lactic acid
        3.3.1.5.4.1 Overview
        3.3.1.5.4.2 D-lactic acid
        3.3.1.5.4.3 L-lactic acid
        3.3.1.5.4.4 Lactide
      3.3.1.5.5 Itaconic acid
        3.3.1.5.5.1 Overview
        3.3.1.5.5.2 Sources
        3.3.1.5.5.3 Applications
        3.3.1.5.5.4 Global production
      3.3.1.5.6 3-HP
        3.3.1.5.6.1 Overview
        3.3.1.5.6.2 Sources
        3.3.1.5.6.3 Applications
        3.3.1.5.6.4 Global production
        3.3.1.5.6.5 Acrylic acid
          3.3.1.5.6.5.1 Overview
          3.3.1.5.6.5.2 Applications
          3.3.1.5.6.5.3 Global production
        3.3.1.5.6.6 1,3-Propanediol (1,3-PDO)
          3.3.1.5.6.6.1 Overview
          3.3.1.5.6.6.2 Applications
          3.3.1.5.6.6.3 Global production
      3.3.1.5.7 Succinic Acid
        3.3.1.5.7.1 Overview
        3.3.1.5.7.2 Sources
        3.3.1.5.7.3 Applications
        3.3.1.5.7.4 Global production
        3.3.1.5.7.5 1,4-Butanediol (1,4-BDO)
          3.3.1.5.7.5.1 Overview
          3.3.1.5.7.5.2 Applications
          3.3.1.5.7.5.3 Global production
        3.3.1.5.7.6 Tetrahydrofuran (THF)
          3.3.1.5.7.6.1 Overview
          3.3.1.5.7.6.2 Applications
          3.3.1.5.7.6.3 Global production
      3.3.1.5.8 Adipic acid
        3.3.1.5.8.1 Overview
        3.3.1.5.8.2 Applications
        3.3.1.5.8.3 Caprolactame
          3.3.1.5.8.3.1 Overview
          3.3.1.5.8.3.2 Applications
          3.3.1.5.8.3.3 Global production
      3.3.1.5.9 Isobutanol
        3.3.1.5.9.1 Overview
        3.3.1.5.9.2 Sources
        3.3.1.5.9.3 Applications
        3.3.1.5.9.4 Global production
        3.3.1.5.9.5 p-Xylene
          3.3.1.5.9.5.1 Overview
          3.3.1.5.9.5.2 Sources
          3.3.1.5.9.5.3 Applications
          3.3.1.5.9.5.4 Global production
          3.3.1.5.9.5.5 Terephthalic acid
          3.3.1.5.9.5.6 Overview
      3.3.1.5.10 1,3 Proppanediol
          3.3.1.5.10.1.1 Overview
        3.3.1.5.10.2 Sources
        3.3.1.5.10.3 Applications
        3.3.1.5.10.4 Global production
      3.3.1.5.11 Monoethylene glycol (MEG)
        3.3.1.5.11.1 Overview
        3.3.1.5.11.2 Sources
        3.3.1.5.11.3 Applications
        3.3.1.5.11.4 Global production
      3.3.1.5.12 Ethanol
        3.3.1.5.12.1 Overview
        3.3.1.5.12.2 Sources
        3.3.1.5.12.3 Applications
        3.3.1.5.12.4 Global production
        3.3.1.5.12.5 Ethylene
          3.3.1.5.12.5.1 Overview
          3.3.1.5.12.5.2 Applications
          3.3.1.5.12.5.3 Global production
          3.3.1.5.12.5.4 Propylene
          3.3.1.5.12.5.5 Vinyl chloride
        3.3.1.5.12.6 Methly methacrylate
  3.3.2 SUGAR CROPS
    3.3.2.1 Saccharose
      3.3.2.1.1 Aniline
        3.3.2.1.1.1 Overview
        3.3.2.1.1.2 Applications
        3.3.2.1.1.3 Global production
      3.3.2.1.2 Fructose
        3.3.2.1.2.1 Overview
        3.3.2.1.2.2 Applications
        3.3.2.1.2.3 Global production
        3.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF)
          3.3.2.1.2.4.1 Overview
          3.3.2.1.2.4.2 Applications
          3.3.2.1.2.4.3 Global production
        3.3.2.1.2.5 5-Chloromethylfurfural (5-CMF)
          3.3.2.1.2.5.1 Overview
          3.3.2.1.2.5.2 Applications
          3.3.2.1.2.5.3 Global production
        3.3.2.1.2.6 Levulinic Acid
          3.3.2.1.2.6.1 Overview
          3.3.2.1.2.6.2 Applications
          3.3.2.1.2.6.3 Global production
        3.3.2.1.2.7 FDME
          3.3.2.1.2.7.1 Overview
          3.3.2.1.2.7.2 Applications
          3.3.2.1.2.7.3 Global production
        3.3.2.1.2.8 2,5-FDCA
          3.3.2.1.2.8.1 Overview
          3.3.2.1.2.8.2 Applications
          3.3.2.1.2.8.3 Global production
  3.3.3 LIGNOCELLULOSIC BIOMASS
    3.3.3.1 Levoglucosenone
      3.3.3.1.1 Overview
      3.3.3.1.2 Applications
      3.3.3.1.3 Global production
    3.3.3.2 Hemicellulose
      3.3.3.2.1 Overview
      3.3.3.2.2 Biochemicals from hemicellulose
      3.3.3.2.3 Global production
      3.3.3.2.4 Furfural
        3.3.3.2.4.1 Overview
        3.3.3.2.4.2 Applications
        3.3.3.2.4.3 Global production
        3.3.3.2.4.4 Furfuyl alcohol
          3.3.3.2.4.4.1 Overview
          3.3.3.2.4.4.2 Applications
          3.3.3.2.4.4.3 Global production
    3.3.3.3 Lignin
      3.3.3.3.1 Overview
      3.3.3.3.2 Sources
      3.3.3.3.3 Applications
        3.3.3.3.3.1 Aromatic compounds
          3.3.3.3.3.1.1 Benzene, toluene and xylene
          3.3.3.3.3.1.2 Phenol and phenolic resins
          3.3.3.3.3.1.3 Vanillin
        3.3.3.3.3.2 Polymers
      3.3.3.3.4 Global production
  3.3.4 PLANT OILS
    3.3.4.1 Overview
    3.3.4.2 Glycerol
      3.3.4.2.1 Overview
      3.3.4.2.2 Applications
      3.3.4.2.3 Global production
      3.3.4.2.4 MPG
        3.3.4.2.4.1 Overview
        3.3.4.2.4.2 Applications
        3.3.4.2.4.3 Global production
      3.3.4.2.5 ECH
        3.3.4.2.5.1 Overview
        3.3.4.2.5.2 Applications
        3.3.4.2.5.3 Global production
    3.3.4.3 Fatty acids
      3.3.4.3.1 Overview
      3.3.4.3.2 Applications
      3.3.4.3.3 Global production
    3.3.4.4 Castor oil
      3.3.4.4.1 Overview
      3.3.4.4.2 Sebacic acid
        3.3.4.4.2.1 Overview
        3.3.4.4.2.2 Applications
        3.3.4.4.2.3 Global production
      3.3.4.4.3 11-Aminoundecanoic acid (11-AA)
        3.3.4.4.3.1 Overview
        3.3.4.4.3.2 Applications
        3.3.4.4.3.3 Global production
    3.3.4.5 Dodecanedioic acid (DDDA)
      3.3.4.5.1 Overview
      3.3.4.5.2 Applications
      3.3.4.5.3 Global production
    3.3.4.6 Pentamethylene diisocyanate
      3.3.4.6.1 Overview
      3.3.4.6.2 Applications
      3.3.4.6.3 Global production
  3.3.5 NON-EDIBIBLE MILK
    3.3.5.1 Casein
      3.3.5.1.1 Overview
      3.3.5.1.2 Applications
      3.3.5.1.3 Global production
3.4 WASTE
  3.4.1 Food waste
    3.4.1.1 Overview
    3.4.1.2 Products and applications
      3.4.1.2.1 Global production
  3.4.2 Agricultural waste
    3.4.2.1 Overview
    3.4.2.2 Products and applications
    3.4.2.3 Global production
  3.4.3 Forestry waste
    3.4.3.1 Overview
    3.4.3.2 Products and applications
    3.4.3.3 Global production
  3.4.4 Aquaculture/fishing waste
    3.4.4.1 Overview
    3.4.4.2 Products and applications
    3.4.4.3 Global production
  3.4.5 Municipal solid waste
    3.4.5.1 Overview
    3.4.5.2 Products and applications
    3.4.5.3 Global production
  3.4.6 Industrial waste
    3.4.6.1 Overview
  3.4.7 Waste oils
    3.4.7.1 Overview
    3.4.7.2 Products and applications
    3.4.7.3 Global production
3.5 MICROBIAL & MINERAL SOURCES
  3.5.1 Microalgae
    3.5.1.1 Overview
    3.5.1.2 Products and applications
    3.5.1.3 Global production
  3.5.2 Macroalgae
    3.5.2.1 Overview
    3.5.2.2 Products and applications
    3.5.2.3 Global production
  3.5.3 Mineral sources
    3.5.3.1 Overview
    3.5.3.2 Products and applications
3.6 GASEOUS
  3.6.1 Biogas
    3.6.1.1 Overview
    3.6.1.2 Products and applications
    3.6.1.3 Global production
  3.6.2 Syngas
    3.6.2.1 Overview
    3.6.2.2 Products and applications
    3.6.2.3 Global production
  3.6.3 Off gases - fermentation CO2, CO
    3.6.3.1 Overview
    3.6.3.2 Products and applications
3.7 COMPANY PROFILES 211 (128 company profiles)

4 BIOBASED POLYMERS AND PLASTICS

4.1 Overview
  4.1.1 Drop-in bio-based plastics
  4.1.2 Novel bio-based plastics
4.2 Biodegradable and compostable plastics
  4.2.1 Biodegradability
  4.2.2 Compostability
4.3 Types
4.4 Key market players
4.5 Synthetic biobased polymers
  4.5.1 Polylactic acid (Bio-PLA)
    4.5.1.1 Market analysis
    4.5.1.2 Production
    4.5.1.3 Producers and production capacities, current and planned
      4.5.1.3.1 Lactic acid producers and production capacities
      4.5.1.3.2 PLA producers and production capacities
      4.5.1.3.3 Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
  4.5.2 Polyethylene terephthalate (Bio-PET)
    4.5.2.1 Market analysis
    4.5.2.2 Producers and production capacities
    4.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
  4.5.3 Polytrimethylene terephthalate (Bio-PTT)
    4.5.3.1 Market analysis
    4.5.3.2 Producers and production capacities
    4.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
  4.5.4 Polyethylene furanoate (Bio-PEF)
    4.5.4.1 Market analysis
    4.5.4.2 Comparative properties to PET
    4.5.4.3 Producers and production capacities
      4.5.4.3.1 FDCA and PEF producers and production capacities
      4.5.4.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).
  4.5.5 Polyamides (Bio-PA)
    4.5.5.1 Market analysis
    4.5.5.2 Producers and production capacities
    4.5.5.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
  4.5.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    4.5.6.1 Market analysis
    4.5.6.2 Producers and production capacities
    4.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
  4.5.7 Polybutylene succinate (PBS) and copolymers
    4.5.7.1 Market analysis
    4.5.7.2 Producers and production capacities
    4.5.7.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
  4.5.8 Polyethylene (Bio-PE)
    4.5.8.1 Market analysis
    4.5.8.2 Producers and production capacities
    4.5.8.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).
  4.5.9 Polypropylene (Bio-PP)
    4.5.9.1 Market analysis
    4.5.9.2 Producers and production capacities
    4.5.9.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)
4.6 Natural biobased polymers
  4.6.1 Polyhydroxyalkanoates (PHA)
    4.6.1.1 Technology description
    4.6.1.2 Types
      4.6.1.2.1 PHB
      4.6.1.2.2 PHBV
    4.6.1.3 Synthesis and production processes
    4.6.1.4 Market analysis
    4.6.1.5 Commercially available PHAs
    4.6.1.6 Markets for PHAs
      4.6.1.6.1 Packaging
      4.6.1.6.2 Cosmetics
        4.6.1.6.2.1 PHA microspheres
      4.6.1.6.3 Medical
        4.6.1.6.3.1 Tissue engineering
        4.6.1.6.3.2 Drug delivery
      4.6.1.6.4 Agriculture
        4.6.1.6.4.1 Mulch film
        4.6.1.6.4.2 Grow bags
    4.6.1.7 Producers and production capacities
  4.6.2 Cellulose
    4.6.2.1 Microfibrillated cellulose (MFC)
      4.6.2.1.1 Market analysis
      4.6.2.1.2 Producers and production capacities
    4.6.2.2 Nanocellulose
      4.6.2.2.1 Cellulose nanocrystals
        4.6.2.2.1.1 Synthesis
        4.6.2.2.1.2 Properties
        4.6.2.2.1.3 Production
        4.6.2.2.1.4 Applications
        4.6.2.2.1.5 Market analysis
        4.6.2.2.1.6 Producers and production capacities
      4.6.2.2.2 Cellulose nanofibers
        4.6.2.2.2.1 Applications
        4.6.2.2.2.2 Market analysis
        4.6.2.2.2.3 Producers and production capacities
      4.6.2.2.3 Bacterial Nanocellulose (BNC)
        4.6.2.2.3.1 Production
        4.6.2.2.3.2 Applications
  4.6.3 Protein-based bioplastics
    4.6.3.1 Types, applications and producers
  4.6.4 Algal and fungal
    4.6.4.1 Algal
      4.6.4.1.1 Advantages
      4.6.4.1.2 Production
      4.6.4.1.3 Producers
    4.6.4.2 Mycelium
      4.6.4.2.1 Properties
      4.6.4.2.2 Applications
      4.6.4.2.3 Commercialization
  4.6.5 Chitosan
    4.6.5.1 Technology description
4.7 Bio-rubber
  4.7.1 Overview
  4.7.2 Applications
  4.7.3 Importance of Recycling and Residue Utilization
  4.7.4 Raw Material Sourcing and Selection
  4.7.5 Production Methods and Processing Techniques
  4.7.6 Environmental Impact and Benefits
  4.7.7 Material Properties and Testing
  4.7.8 Comparison with Conventional Rubber
  4.7.9 Applications in Construction
    4.7.9.1 Bio-Rubber Use in Building Panels
    4.7.9.2 Thermal and Acoustic Insulation
  4.7.10 Applications in the Automotive Industry
    4.7.10.1 Automotive Parts and Components
  4.7.11 Applications in Personal Protective Equipment (PPE)
    4.7.11.1 Gloves, Boots, and Safety Equipment
    4.7.11.2 Enhancing Durability and Comfort
    4.7.11.3 2 Standards Compliance and Health Implications
    4.7.11.4 Challenges and Limitations
  4.7.12 Technological Challenges in Bio-Rubber Production
  4.7.13 Cost and Economic Viability
  4.7.14 Regulatory and Safety Concerns
  4.7.15 Sustainability and Environmental Impact Analysis
  4.7.16 Growth Prospects in Construction, Automotive, and PPE Sectors
4.8 Bio-plastic from residues
  4.8.1 Overview
  4.8.2 Production and Properties
  4.8.3 Manufacturing Processes and Techniques
  4.8.4 Material Properties: Biodegradability, Food-Safe, and Recyclability
  4.8.5 Applications
    4.8.5.1 Caps and Closures
      4.8.5.1.1 Bottle Caps and Sealing Solutions
      4.8.5.1.2 Compatibility with Food and Beverage Standards
    4.8.5.2 Personal Protective Equipment (PPE)
      4.8.5.2.1 Bio-Plastic in Face Shields, Gloves, and Masks
      4.8.5.2.2 Biodegradability and Safety Standards
      4.8.5.2.3 Market Trends in Eco-Friendly PPE
    4.8.5.3 Healthcare and Medical Products
      4.8.5.3.1 Disposable Medical Tools, Packaging, and Devices
      4.8.5.3.2 Sterility, Safety, and Bio-Compatibility Standards
      4.8.5.3.3 Adoption by Healthcare Providers
    4.8.5.4 Agriculture
      4.8.5.4.1 Mulch Films, Plant Pots, and Seed Coatings
    4.8.5.5 Cosmetics and Food
      4.8.5.5.1 Bio-Plastic in Cosmetic Jars, Food Containers, and Wraps
      4.8.5.5.2 Food Contact Safety and Aesthetic Appeal
      4.8.5.5.3 Demand Trends for Sustainable Cosmetic and Food Packaging
    4.8.5.6 Automotive Interior Components
      4.8.5.6.1 Bio-Plastic in Dashboards, Panels, and Upholstery
      4.8.5.6.2 Performance and Durability Standards
      4.8.5.6.3 Market Adoption in Eco-Friendly Automotive Solutions
4.9 Production by region
  4.9.1 North America
  4.9.2 Europe
  4.9.3 Asia-Pacific
    4.9.3.1 China
    4.9.3.2 Japan
    4.9.3.3 Thailand
    4.9.3.4 Indonesia
  4.9.4 Latin America
4.10 End use markets
  4.10.1 Packaging
    4.10.1.1 Processes for bioplastics in packaging
    4.10.1.2 Applications
    4.10.1.3 Flexible packaging
      4.10.1.3.1 Production volumes 2019-2035
    4.10.1.4 Rigid packaging
      4.10.1.4.1 Production volumes 2019-2035
  4.10.2 Consumer products
    4.10.2.1 Applications
    4.10.2.2 Production volumes 2019-2035
  4.10.3 Automotive
    4.10.3.1 Applications
    4.10.3.2 Production volumes 2019-2035
  4.10.4 Construction
    4.10.4.1 Applications
    4.10.4.2 Production volumes 2019-2035
  4.10.5 Textiles
    4.10.5.1 Apparel
    4.10.5.2 Footwear
    4.10.5.3 Medical textiles
    4.10.5.4 Production volumes 2019-2035
  4.10.6 Electronics
    4.10.6.1 Applications
    4.10.6.2 Production volumes 2019-2035
  4.10.7 Agriculture and horticulture
    4.10.7.1 Production volumes 2019-2035
4.11 Lignin
  4.11.1 Introduction
    4.11.1.1 What is lignin?
      4.11.1.1.1 Lignin structure
    4.11.1.2 Types of lignin
      4.11.1.2.1 Sulfur containing lignin
      4.11.1.2.2 Sulfur-free lignin from biorefinery process
    4.11.1.3 Properties
    4.11.1.4 The lignocellulose biorefinery
    4.11.1.5 Markets and applications
    4.11.1.6 Challenges for using lignin
  4.11.2 Lignin production processes
    4.11.2.1 Lignosulphonates
    4.11.2.2 Kraft Lignin
      4.11.2.2.1 LignoBoost process
      4.11.2.2.2 LignoForce method
      4.11.2.2.3 Sequential Liquid Lignin Recovery and Purification
      4.11.2.2.4 A-Recovery+
    4.11.2.3 Soda lignin
    4.11.2.4 Biorefinery lignin
      4.11.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes
    4.11.2.5 Organosolv lignins
    4.11.2.6 Hydrolytic lignin
  4.11.3 Markets for lignin
    4.11.3.1 Market drivers and trends for lignin
    4.11.3.2 Production capacities
      4.11.3.2.1 Technical lignin availability (dry ton/y)
      4.11.3.2.2 Biomass conversion (Biorefinery)
    4.11.3.3 Global consumption of lignin
      4.11.3.3.1 By type
      4.11.3.3.2 By market
    4.11.3.4 Prices
    4.11.3.5 Heat and power energy
    4.11.3.6 Pyrolysis and syngas
    4.11.3.7 Aromatic compounds
      4.11.3.7.1 Benzene, toluene and xylene
      4.11.3.7.2 Phenol and phenolic resins
      4.11.3.7.3 Vanillin
    4.11.3.8 Plastics and polymers
4.12 COMPANY PROFILES 436 (526 company profiles)

5 NATURAL FIBER PLASTICS AND COMPOSITES

5.1 Introduction
  5.1.1 What are natural fiber materials?
  5.1.2 Benefits of natural fibers over synthetic
  5.1.3 Markets and applications for natural fibers
  5.1.4 Commercially available natural fiber products
  5.1.5 Market drivers for natural fibers
  5.1.6 Market challenges
  5.1.7 Wood flour as a plastic filler
5.2 Types of natural fibers in plastic composites
  5.2.1 Plants
    5.2.1.1 Seed fibers
      5.2.1.1.1 Kapok
      5.2.1.1.2 Luffa
    5.2.1.2 Bast fibers
      5.2.1.2.1 Jute
      5.2.1.2.2 Hemp
      5.2.1.2.3 Flax
      5.2.1.2.4 Ramie
      5.2.1.2.5 Kenaf
    5.2.1.3 Leaf fibers
      5.2.1.3.1 Sisal
      5.2.1.3.2 Abaca
    5.2.1.4 Fruit fibers
      5.2.1.4.1 Coir
      5.2.1.4.2 Banana
      5.2.1.4.3 Pineapple
    5.2.1.5 Stalk fibers from agricultural residues
      5.2.1.5.1 Rice fiber
      5.2.1.5.2 Corn
    5.2.1.6 Cane, grasses and reed
      5.2.1.6.1 Switchgrass
      5.2.1.6.2 Sugarcane (agricultural residues)
      5.2.1.6.3 Bamboo
      5.2.1.6.4 Fresh grass (green biorefinery)
    5.2.1.7 Modified natural polymers
      5.2.1.7.1 Mycelium
      5.2.1.7.2 Chitosan
      5.2.1.7.3 Alginate
  5.2.2 Animal (fibrous protein)
    5.2.2.1 Silk fiber
  5.2.3 Wood-based natural fibers
    5.2.3.1 Cellulose fibers
      5.2.3.1.1 Market overview
      5.2.3.1.2 Producers
    5.2.3.2 Microfibrillated cellulose (MFC)
      5.2.3.2.1 Market overview
      5.2.3.2.2 Producers
    5.2.3.3 Cellulose nanocrystals
      5.2.3.3.1 Market overview
      5.2.3.3.2 Producers
    5.2.3.4 Cellulose nanofibers
      5.2.3.4.1 Market overview
      5.2.3.4.2 Producers
5.3 Processing and Treatment of Natural Fibers
5.4 Interface and Compatibility of Natural Fibers with Plastic Matrices
  5.4.1 Adhesion and Bonding
  5.4.2 Moisture Absorption and Dimensional Stability
  5.4.3 Thermal Expansion and Compatibility
  5.4.4 Dispersion and Distribution
  5.4.5 Matrix Selection
  5.4.6 Fiber Content and Alignment
  5.4.7 Manufacturing Techniques
5.5 Manufacturing processes
  5.5.1 Injection molding
  5.5.2 Compression moulding
  5.5.3 Extrusion
  5.5.4 Thermoforming
  5.5.5 Thermoplastic pultrusion
  5.5.6 Additive manufacturing (3D printing)
5.6 Global market for natural fibers
  5.6.1 Automotive
    5.6.1.1 Applications
    5.6.1.2 Commercial production
    5.6.1.3 SWOT analysis
  5.6.2 Packaging
    5.6.2.1 Applications
    5.6.2.2 SWOT analysis
  5.6.3 Construction
    5.6.3.1 Applications
    5.6.3.2 SWOT analysis
  5.6.4 Appliances
    5.6.4.1 Applications
    5.6.4.2 SWOT analysis
  5.6.5 Consumer electronics
    5.6.5.1 Applications
    5.6.5.2 SWOT analysis
  5.6.6 Furniture
    5.6.6.1 Applications
    5.6.6.2 SWOT analysis
5.7 Wood composites
  5.7.1 Applications
  5.7.2 Importance of Wood Composite in Sustainable Manufacturing
  5.7.3 Market Overview and Dynamics of Wood Composite Market
  5.7.4 Production and Material Properties
  5.7.5 Types of Wood Composite Materials
  5.7.6 Performance Characteristics
  5.7.7 Applications
    5.7.7.1 Tools and Appliances
      5.7.7.1.1 Wood Composite Use in Industrial Tools
      5.7.7.1.2 Bearings, Including Sliding Bearings
      5.7.7.1.3 Advantages of Wood Composite Bearings in Load-Bearing Applications
      5.7.7.1.4 Case Studies
      5.7.7.1.5 Industry Trends
    5.7.7.2 Construction and Building Materials
      5.7.7.2.1 Wood Composite in Floor Plates, Panels, and Walls
      5.7.7.2.2 Benefits in Construction: Strength, Insulation, and Aesthetics
      5.7.7.2.3 Case Studies
    5.7.7.3 Engine Components
      5.7.7.3.1 Benefits of Wood Composite in Weight Reduction and Insulation
      5.7.7.3.2 Analysis of Wood Composite Performance in High-Stress Environments
  5.7.8 Technological Barriers
  5.7.9 Environmental and Sustainability Considerations
  5.7.10 Emerging Technologies in Wood Composite Manufacturing
5.8 Competitive landscape
5.9 Future outlook
5.10 Revenues
  5.10.1 By end use market
  5.10.2 By Material Type
  5.10.3 By Plastic Type
  5.10.4 By region
5.11 Company profiles 897 (67 company profiles)

6 SUSTAINABLE CONSTRUCTION MATERIALS

6.1 Market overview
  6.1.1 Benefits of Sustainable Construction
  6.1.2 Global Trends and Drivers
6.2 Global revenues
  6.2.1 By materials type
  6.2.2 By market
6.3 Types of sustainable construction materials
  6.3.1 Established bio-based construction materials
  6.3.2 Hemp-based Materials
    6.3.2.1 Hemp Concrete (Hempcrete)
    6.3.2.2 Hemp Fiberboard
    6.3.2.3 Hemp Insulation
  6.3.3 Mycelium-based Materials
    6.3.3.1 Insulation
    6.3.3.2 Structural Elements
    6.3.3.3 Acoustic Panels
    6.3.3.4 Decorative Elements
  6.3.4 Sustainable Concrete and Cement Alternatives
    6.3.4.1 Geopolymer Concrete
    6.3.4.2 Recycled Aggregate Concrete
    6.3.4.3 Lime-Based Materials
    6.3.4.4 Self-healing concrete
      6.3.4.4.1 Bioconcrete
      6.3.4.4.2 Fiber concrete
    6.3.4.5 Microalgae biocement
    6.3.4.6 Carbon-negative concrete
    6.3.4.7 Biomineral binders
  6.3.5 Natural Fiber Composites
    6.3.5.1 Types of Natural Fibers
    6.3.5.2 Properties
    6.3.5.3 Applications in Construction
  6.3.6 Cellulose nanofibers
    6.3.6.1 Sandwich composites
    6.3.6.2 Cement additives
    6.3.6.3 Pump primers
    6.3.6.4 Insulation materials
    6.3.6.5 Coatings and paints
    6.3.6.6 3D printing materials
  6.3.7 Sustainable Insulation Materials
    6.3.7.1 Types of sustainable insulation materials
    6.3.7.2 Aerogel Insulation
      6.3.7.2.1 Silica aerogels
        6.3.7.2.1.1 Properties
        6.3.7.2.1.2 Thermal conductivity
        6.3.7.2.1.3 Mechanical
        6.3.7.2.1.4 Silica aerogel precursors
        6.3.7.2.1.5 Products
          6.3.7.2.1.5.1 Monoliths
          6.3.7.2.1.5.2 Powder
          6.3.7.2.1.5.3 Granules
          6.3.7.2.1.5.4 Blankets
          6.3.7.2.1.5.5 Aerogel boards
          6.3.7.2.1.5.6 Aerogel renders
        6.3.7.2.1.6 3D printing of aerogels

LIST OF FIGURES

Figure 1. Schematic of biorefinery processes.
Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes).
Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes).
Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes).
Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes.
Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes).
Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes).
Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes).
Figure 9. Global lactide production, 2018-2035 (metric tonnes).
Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes).
Figure 11. Global production of 3-HP, 2018-2035 (metric tonnes).
Figure 12. Global production of bio-based acrylic acid, 2018-2035 (metric tonnes).
Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes).
Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes).
Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes).
Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes).
Figure 17. Overview of Toray process.
Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes).
Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes).
Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes).
Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes).
Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes).
Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes).
Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes).
Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes).
Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes).
Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes).
Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes).
Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes).
Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes).
Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes).
Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes).
Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes).
Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes).
Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes).
Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes:
Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes).
Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes).
Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes).
Figure 40. Schematic of WISA plywood home.
Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes).
Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes).
Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes).
Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes).
Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes).
Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes).
Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes).
Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes).
Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes).
Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes).
Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes).
Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes).
Figure 57. Global microalgae production, 2018-2035 (million metric tonnes).
Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes).
Figure 59. Global production of biogas, 2018-2035 (billion m3).
Figure 60. Global production of syngas, 2018-2035 (billion m3).
Figure 61. formicobio™ technology.
Figure 62. Domsjц process.
Figure 63. TMP-Bio Process.
Figure 64. Lignin gel.
Figure 65. BioFlex process.
Figure 66. LX Process.
Figure 67. METNIN™ Lignin refining technology.
Figure 68. Enfinity cellulosic ethanol technology process.
Figure 69. Precision Photosynthesis™ technology.
Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 71. UPM biorefinery process.
Figure 72. The Proesa® Process.
Figure 73. Goldilocks process and applications.
Figure 74. Coca-Cola PlantBottle®.
Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.
Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes).
Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes).
Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.
Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).
Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes).
Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes).
Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes).
Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).
Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes).
Figure 86. PHA family.
Figure 87. TEM image of cellulose nanocrystals.
Figure 88. CNC preparation.
Figure 89. Extracting CNC from trees.
Figure 90. CNC slurry.
Figure 91. CNF gel.
Figure 92. Bacterial nanocellulose shapes
Figure 93. BLOOM masterbatch from Algix.
Figure 94. Typical structure of mycelium-based foam.
Figure 95. Commercial mycelium composite construction materials.
Figure 96. Global production capacities for bioplastics by region 2019-2035, 1,000 tonnes.
Figure 97. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes.
Figure 98. PHA bioplastics products.
Figure 99. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes).
Figure 100. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).
Figure 101. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes.
Figure 102. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes.
Figure 103. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes.
Figure 104. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes.
Figure 105. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes.
Figure 106. Biodegradable mulch films.
Figure 107. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes.
Figure 108. High purity lignin.
Figure 109. Lignocellulose architecture.
Figure 110. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.
Figure 111. The lignocellulose biorefinery.
Figure 112. LignoBoost process.
Figure 113. LignoForce system for lignin recovery from black liquor.
Figure 114. Sequential liquid-lignin recovery and purification (SLPR) system.
Figure 115. A-Recovery+ chemical recovery concept.
Figure 116. Schematic of a biorefinery for production of carriers and chemicals.
Figure 117. Organosolv lignin.
Figure 118. Hydrolytic lignin powder.
Figure 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT).
Figure 120. Estimated consumption of lignin, by market, 2019-2035 (000 MT).
Figure 121. Pluumo.
Figure 122. ANDRITZ Lignin Recovery process.
Figure 123. Anpoly cellulose nanofiber hydrogel.
Figure 124. MEDICELLU™.
Figure 125. Asahi Kasei CNF fabric sheet.
Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
Figure 127. CNF nonwoven fabric.
Figure 128. Roof frame made of natural fiber.
Figure 129. Beyond Leather Materials product.
Figure 130. BIOLO e-commerce mailer bag made from PHA.
Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.
Figure 132. Fiber-based screw cap.
Figure 133. formicobio™ technology.
Figure 134. nanoforest-S.
Figure 135. nanoforest-PDP.
Figure 136. nanoforest-MB.
Figure 137. sunliquid® production process.
Figure 138. CuanSave film.
Figure 139. Celish.
Figure 140. Trunk lid incorporating CNF.
Figure 141. ELLEX products.
Figure 142. CNF-reinforced PP compounds.
Figure 143. Kirekira! toilet wipes.
Figure 144. Color CNF.
Figure 145. Rheocrysta spray.
Figure 146. DKS CNF products.
Figure 147. Domsjц process.
Figure 148. Mushroom leather.
Figure 149. CNF based on citrus peel.
Figure 150. Citrus cellulose nanofiber.
Figure 151. Filler Bank CNC products.
Figure 152. Fibers on kapok tree and after processing.
Figure 153. TMP-Bio Process.
Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.
Figure 155. Water-repellent cellulose.
Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE).
Figure 157. PHA production process.
Figure 158. CNF products from Furukawa Electric.
Figure 159. AVAPTM process.
Figure 160. GreenPower+™ process.
Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
Figure 162. Non-aqueous CNF dispersion 'Senaf' (Photo shows 5% of plasticizer).
Figure 163. CNF gel.
Figure 164. Block nanocellulose material.
Figure 165. CNF products developed by Hokuetsu.
Figure 166. Marine leather products.
Figure 167. Inner Mettle Milk products.
Figure 168. Kami Shoji CNF products.
Figure 169. Dual Graft System.
Figure 170. Engine cover utilizing Kao CNF composite resins.
Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).
Figure 172. Kel Labs yarn.
Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).
Figure 174. Lignin gel.
Figure 175. BioFlex process.
Figure 176. Nike Algae Ink graphic tee.
Figure 177. LX Process.
Figure 178. Made of Air's HexChar panels.
Figure 179. TransLeather.
Figure 180. Chitin nanofiber product.
Figure 181. Marusumi Paper cellulose nanofiber products.
Figure 182. FibriMa cellulose nanofiber powder.
Figure 183. METNIN™ Lignin refining technology.
Figure 184. IPA synthesis method.
Figure 185. MOGU-Wave panels.
Figure 186. CNF slurries.
Figure 187. Range of CNF products.
Figure 188. Reishi.
Figure 189. Compostable water pod.
Figure 190. Leather made from leaves.
Figure 191. Nike shoe with beLEAF™.
Figure 192. CNF clear sheets.
Figure 193. Oji Holdings CNF polycarbonate product.
Figure 194. Enfinity cellulosic ethanol technology process.
Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.
Figure 196. XCNF.
Figure 197: Plantrose process.
Figure 198. LOVR hemp leather.
Figure 199. CNF insulation flat plates.
Figure 200. Hansa lignin.
Figure 201. Manufacturing process for STARCEL.
Figure 202. Manufacturing process for STARCEL.
Figure 203. 3D printed cellulose shoe.
Figure 204. Lyocell process.
Figure 205. North Face Spiber Moon Parka.
Figure 206. PANGAIA LAB NXT GEN Hoodie.
Figure 207. Spider silk production.
Figure 208. Stora Enso lignin battery materials.
Figure 209. 2 wt.? CNF suspension.
Figure 210. BiNFi-s Dry Powder.
Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.
Figure 212. Silk nanofiber (right) and cocoon of raw material.
Figure 213. Sulapac cosmetics containers.
Figure 214. Sulzer equipment for PLA polymerization processing.
Figure 215. Solid Novolac Type lignin modified phenolic resins.
Figure 216. Teijin bioplastic film for door handles.
Figure 217. Corbion FDCA production process.
Figure 218. Comparison of weight reduction effect using CNF.
Figure 219. CNF resin products.
Figure 220. UPM biorefinery process.
Figure 221. Vegea production process.
Figure 222. The Proesa® Process.
Figure 223. Goldilocks process and applications.
Figure 224. Visolis’ Hybrid Bio-Thermocatalytic Process.
Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.
Figure 226. Worn Again products.
Figure 227. Zelfo Technology GmbH CNF production process.
Figure 228. Absolut natural based fiber bottle cap.
Figure 229. Adidas algae-ink tees.
Figure 230. Carlsberg natural fiber beer bottle.
Figure 231. Miratex watch bands.
Figure 232. Adidas Made with Nature Ultraboost 22.
Figure 233. PUMA RE:SUEDE sneaker
Figure 234. Types of natural fibers.
Figure 235. Luffa cylindrica fiber.
Figure 236. Pineapple fiber.
Figure 237. Typical structure of mycelium-based foam.
Figure 238. Commercial mycelium composite construction materials.
Figure 239. SEM image of microfibrillated cellulose.
Figure 240. Hemp fibers combined with PP in car door panel.
Figure 241. Car door produced from Hemp fiber.
Figure 242. Natural fiber composites in the BMW M4 GT4 racing car.
Figure 243. Mercedes-Benz components containing natural fibers.
Figure 244. SWOT analysis: natural fibers in the automotive market.
Figure 245. SWOT analysis: natural fibers in the packaging market.
Figure 246. SWOT analysis: natural fibers in the appliances market.
Figure 247. SWOT analysis: natural fibers in the appliances market.
Figure 248. SWOT analysis: natural fibers in the consumer electronics market.
Figure 249. SWOT analysis: natural fibers in the furniture market.
Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD).
Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).
Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD).
Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).
Figure 254. Asahi Kasei CNF fabric sheet.
Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.
Figure 256. CNF nonwoven fabric.
Figure 257. Roof frame made of natural fiber.
Figure 258.Tras Rei chair incorporating ampliTex fibers.
Figure 259. Natural fibres racing seat.
Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers.
Figure 261. Fiber-based screw cap.
Figure 262. Cellugy materials.
Figure 263. CuanSave film.
Figure 264. Trunk lid incorporating CNF.
Figure 265. ELLEX products.
Figure 266. CNF-reinforced PP compounds.
Figure 267. Kirekira! toilet wipes.
Figure 268. DKS CNF products.
Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE).
Figure 270. CNF products from Furukawa Electric.
Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.
Figure 272. CNF gel.
Figure 273. Block nanocellulose material.
Figure 274. CNF products developed by Hokuetsu.
Figure 275. Dual Graft System.
Figure 276. Engine cover utilizing Kao CNF composite resins.
Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).
Figure 278. Cellulomix production process.
Figure 279. Nanobase versus conventional products.
Figure 280. MOGU-Wave panels.
Figure 281. CNF clear sheets.
Figure 282. Oji Holdings CNF polycarbonate product.
Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner.
Figure 284. XCNF.
Figure 285. Manufacturing process for STARCEL.
Figure 286. 2 wt.? CNF suspension.
Figure 287. Sulapac cosmetics containers.
Figure 288. Comparison of weight reduction effect using CNF.
Figure 289. CNF resin products.
Figure 290. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).
Figure 291. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).
Figure 292. Luum Temple, constructed from Bamboo.
Figure 293. Typical structure of mycelium-based foam.
Figure 294. Commercial mycelium composite construction materials.
Figure 295. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).
Figure 296. Self-healing bacteria crack filler for concrete.
Figure 297. Self-healing bio concrete.
Figure 298. Microalgae based biocement masonry bloc.
Figure 299. Classification of aerogels.
Figure 300. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.
Figure 301. Monolithic aerogel.
Figure 302. Aerogel granules.
Figure 303. Internal aerogel granule applications.


More Publications