The SON (Self-Organizing Networks) Ecosystem: 2016 – 2030 – Opportunities, Challenges, Strategies & Forecasts
SON (Self-Organizing Network) technology minimizes the lifecycle cost of running a mobile network by eliminating manual configuration of equipment at the time of deployment, right through to dynamically optimizing performance and troubleshooting during operation. This can significantly reduce the cost of the operator’s services, improving the OpEx to revenue ratio.
Amid growing demands for mobile broadband connectivity, mobile operators are keen to capitalize on SON to minimize rollout delays and operational expenditures associated with their ongoing LTE and small cell deployments.
Originally targeted for the RAN (Radio Access Network) segment of mobile networks, SON technology is now also utilized in the mobile core and transport network segments. In addition, Wi-Fi access point OEMs are beginning to integrate SON features such as plug-and-play deployment, autonomous performance optimization, self-healing and proactive defense against unauthorized access.
Despite challenges relating to implementation complexities and multi-vendor interoperability, SON revenue is expected to grow to more than $5 Billion by the end of 2020, exceeding conventional mobile network optimization revenue by a significant margin. Furthermore, the SON ecosystem is increasingly witnessing convergence with other technological innovations such as Big Data, predictive analytics and DPI (Deep Packet Inspection).
The “SON (Self-Organizing Networks) Ecosystem: 2016 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the SON and associated mobile network optimization ecosystem including key market drivers, challenges, OpEx and CapEx savings potential, use cases, SON deployment case studies, future roadmap, value chain, vendor analysis and strategies. The report also presents revenue forecasts for both SON and conventional mobile network optimization, along with individual projections for 10 SON submarkets, 6 regions and 15 countries from 2016 through to 2030.
The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.
Amid growing demands for mobile broadband connectivity, mobile operators are keen to capitalize on SON to minimize rollout delays and operational expenditures associated with their ongoing LTE and small cell deployments.
Originally targeted for the RAN (Radio Access Network) segment of mobile networks, SON technology is now also utilized in the mobile core and transport network segments. In addition, Wi-Fi access point OEMs are beginning to integrate SON features such as plug-and-play deployment, autonomous performance optimization, self-healing and proactive defense against unauthorized access.
Despite challenges relating to implementation complexities and multi-vendor interoperability, SON revenue is expected to grow to more than $5 Billion by the end of 2020, exceeding conventional mobile network optimization revenue by a significant margin. Furthermore, the SON ecosystem is increasingly witnessing convergence with other technological innovations such as Big Data, predictive analytics and DPI (Deep Packet Inspection).
The “SON (Self-Organizing Networks) Ecosystem: 2016 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the SON and associated mobile network optimization ecosystem including key market drivers, challenges, OpEx and CapEx savings potential, use cases, SON deployment case studies, future roadmap, value chain, vendor analysis and strategies. The report also presents revenue forecasts for both SON and conventional mobile network optimization, along with individual projections for 10 SON submarkets, 6 regions and 15 countries from 2016 through to 2030.
The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.
1 CHAPTER 1: INTRODUCTION
1.1 Executive Summary
1.2 Topics Covered
1.3 Forecast Segmentation
1.4 Key Questions Answered
1.5 Key Findings
1.6 Methodology
1.7 Target Audience
1.8 Companies & Organizations Mentioned
2 CHAPTER 2: SON & MOBILE NETWORK OPTIMIZATION ECOSYSTEM
2.1 Conventional Mobile Network Optimization
2.1.1 Network Planning
2.1.2 Measurement Collection: Drive Tests, Probes and End User Data
2.1.3 Post-Processing, Optimization & Policy Enforcement
2.2 The SON (Self-Organizing Network) Concept
2.2.1 What is SON?
2.2.2 The Need for SON
2.3 Functional Areas of SON
2.3.1 Self-Configuration
2.3.2 Self-Optimization
2.3.3 Self-Healing
2.4 Market Drivers for SON Adoption
2.4.1 Continued Wireless Network Infrastructure Investments
2.4.2 Optimization in Multi-RAN & HetNet Environments
2.4.3 OpEx & CapEx Reduction: The Cost Saving Potential
2.4.4 Improving Subscriber Experience and Churn Reduction
2.4.5 Power Savings
2.4.6 Enabling Small Cell Deployments
2.4.7 Traffic Management
2.5 Market Barriers for SON Adoption
2.5.1 Complexity of Implementation
2.5.2 Reorganization & Changes to Standard Engineering Procedures
2.5.3 Lack of Trust in Automation
2.5.4 Lack of Operator Control: Proprietary SON Algorithms
2.5.5 Coordination between Distributed and Centralized SON
2.5.6 Network Security Concerns: New Interfaces and Lack of Monitoring
3 CHAPTER 3: SON TECHNOLOGY, USE CASES & IMPLEMENTATION ARCHITECTURES
3.1 Where Does SON Sit Within a Mobile Network?
3.1.1 RAN
3.1.2 Mobile Core
3.1.3 Mobile Backhaul & Fronthaul
3.1.4 Device-Assisted SON
3.2 SON Architecture
3.2.1 C-SON (Centralized SON)
3.2.2 D-SON (Distributed SON)
3.2.3 H-SON (Hybrid SON)
3.3 SON Use-Cases
3.3.1 Self-Configuration of Network Elements
3.3.2 Automatic Connectivity Management
3.3.3 Self-Testing of Network Elements
3.3.4 Self-Recovery of Network Elements/Software
3.3.5 Self-Healing of Board Faults
3.3.6 Automatic Inventory
3.3.7 ANR (Automatic Neighbor Relations)
3.3.8 PCI (Physical Cell ID) Configuration
3.3.9 CCO (Coverage & Capacity Optimization)
3.3.10 MRO (Mobility Robustness Optimization)
3.3.11 MLB (Mobile Load Balancing)
3.3.12 RACH (Random Access Channel) Optimization
3.3.13 ICIC (Inter-Cell Interference Coordination)
3.3.14 eICIC (Enhanced ICIC)
3.3.15 Energy Savings
3.3.16 Cell Outage Detection & Compensation
3.3.17 Self-Configuration & Optimization of Small Cells
3.3.18 Optimization of DAS (Distributed Antenna Systems)
3.3.19 RAN Aware Traffic Shaping
3.3.20 Traffic Steering in HetNets
3.3.21 Optimization of Virtualized Network Resources
3.3.22 Auto-Provisioning of Transport Links
3.3.23 Transport Network Bandwidth Optimization
3.3.24 Transport Network Interference Management
3.3.25 SON Coordination Management
3.3.26 Seamless Vendor Infrastructure Swap
4 CHAPTER 4: SON STANDARDIZATION
4.1 NGNM (Next Generation Mobile Networks) Alliance
4.1.1 Conception of the SON Initiative
4.1.2 Functional Areas and Requirements
4.1.3 Implementation Approach
4.1.4 P-SmallCell (Project Small Cell)
4.1.5 Recommendations for Multi-Vendor SON Deployment
4.2 3GPP (Third Generation Partnership Project)
4.2.1 Release
4.2.2 Release
4.2.3 Release
4.2.4 Release
4.2.5 Release 12, 13 & Beyond
4.2.6 Implementation Approach
4.3 Small Cell Forum
4.3.1 Release 7: Focus on SON for Small Cells
4.3.2 SON API
4.3.3 X2 Interoperability
4.4 WBA (Wireless Broadband Alliance)
4.4.1 SON Integration in Carrier Wi-Fi Guidelines
4.5 CableLabs
4.5.1 SON Parameter Exchange in Wi-Fi Gateway Management Specification
5 CHAPTER 5: SON DEPLOYMENT CASE STUDIES
5.1 AT&T
5.1.1 Vendor Selection
5.1.2 Implemented Use Cases
5.1.3 Results
5.2 Globe Telecom
5.2.1 Vendor Selection
5.2.2 Implemented Use Cases
5.2.3 Results
5.3 KDDI Corporation
5.3.1 Vendor Selection
5.3.2 Implemented Use Cases
5.3.3 Results
5.4 Singtel Group
5.4.1 Vendor Selection
5.4.2 Implemented Use Cases
5.4.3 Results
5.5 SK Telecom
5.5.1 Vendor Selection
5.5.2 Implemented Use Cases
5.5.3 Results
5.6 Telefónica Group
5.6.1 Vendor Selection
5.6.2 Implemented Use Cases
5.6.3 Results
5.7 TIM (Telecom Italia Mobile)
5.7.1 Vendor Selection
5.7.2 Implemented Use Cases
5.7.3 Results
5.8 Turkcell Group
5.8.1 Vendor Selection
5.8.2 Implemented Use Cases
5.8.3 Results
5.9 Vodafone Group
5.9.1 Vendor Selection
5.9.2 Implemented Use Cases
5.9.3 Results
6 CHAPTER 6: INDUSTRY ROADMAP & VALUE CHAIN
6.1 Industry Roadmap
6.1.1 Large Scale Adoption of SON Technology: 2016 - 2020
6.1.2 Towards QoE/QoS Based End-to-End SON: 2020 - 2025
6.1.3 Continued Investments to Support 5G Rollouts: 2025 - 2030
6.2 Value Chain
6.3 Embedded Technology Ecosystem
6.3.1 Chipset Developers
6.3.2 Embedded Component/Software Providers
6.4 RAN Ecosystem
6.4.1 Macrocell RAN OEMs
6.4.2 Pure-Play Small Cell OEMs
6.4.3 Wi-Fi Access Point OEMs
6.4.4 DAS & Repeater Solution Providers
6.4.5 C-RAN Solution Providers
6.4.6 Other Technology Providers
6.5 Transport Networking Ecosystem
6.5.1 Backhaul & Fronthaul Solution Providers
6.6 Mobile Core Ecosystem
6.6.1 Mobile Core Solution Providers
6.7 Connectivity Ecosystem
6.7.1 Mobile Operators
6.7.2 Wi-Fi Connectivity Providers
6.7.3 SCaaS (Small Cells as a Service) Providers
6.8 SON Ecosystem
6.8.1 SON Solution Providers
6.9 SDN & NFV Ecosystem
6.9.1 SDN & NFV Providers
7 CHAPTER 7: VENDOR LANDSCAPE
7.1 Accedian Networks
7.2 Accelleran
7.3 Accuver
7.4 AirHop Communications
7.5 Airspan Networks
7.6 Alvarion Technologies
7.7 Altiostar Networks
7.8 Amdocs
7.9 Arcadyan Technology Corporation
7.10 Argela
7.11 Aricent
7.12 ARItel
7.13 Artemis Networks
7.14 Astellia
7.15 ASUS (ASUSTeK Computer)
7.16 ATDI
7.17 Avvasi
7.18 Baicells
7.19 Belkin International
7.20 Benu Networks
7.21 BLiNQ Networks
7.22 Broadcom
7.23 Brocade Communications Systems
7.24 Casa Systems
7.25 Cavium
7.26 CBNL (Cambridge Broadband Networks Limited)
7.27 CCS (Cambridge Communication Systems)
7.28 CellMining
7.29 Cellwize
7.30 Celtro
7.31 CENTRI
7.32 Cisco Systems
7.33 Citrix Systems
7.34 Comarch
7.35 CommAgility
7.36 CommScope
7.37 Commsquare
7.38 Contela
7.39 Coriant
7.40 Datang Mobile
7.41 Dell EMC
7.42 Digitata
7.43 D-Link Corporation
7.44 ECE (European Communications Engineering)
7.45 Equiendo
7.46 Ericsson
7.47 Ercom
7.48 EXFO
7.49 Flash Networks
7.50 Forsk
7.51 Fujitsu
7.52 Gemtek Technology Company
7.53 General Dynamics Mission Systems
7.54 GoNet Systems
7.55 Guavus
7.56 GWT (Global Wireless Technologies)
7.57 Hitachi
7.58 Huawei
7.59 InfoVista
7.60 Innovile
7.61 Intel Corporation
7.62 InterDigital
7.63 Intracom Telecom
7.64 ip.access
7.65 JRC (Japan Radio Company)
7.66 Juni Global
7.67 Keysight Technologies
7.68 Kumu Networks
7.69 Lemko Corporation
7.70 Luminate Wireless
7.71 Mojo Networks
7.72 NEC Corporation
7.73 NetScout Systems
7.74 New Postcom Equipment Company
7.75 Nokia Networks
7.76 Nutaq
7.77 NXP Semiconductors
7.78 Oceus Networks
7.79 Opera Software
7.80 Optulink
7.81 Parallel Wireless
7.82 P.I.Works
7.83 Phluido
7.84 Plano Engineering
7.85 Potevio (China Potevio Company)
7.86 Qualcomm
7.87 Quanta Computer
7.88 Qucell
7.89 RADCOM
7.90 Radisys Corporation
7.91 RED Technologies
7.92 Redline Communications
7.93 Rohde & Schwarz
7.94 Samji Electronics Company
7.95 Samsung Electronics
7.96 SEDICOM
7.97 SerComm Corporation
7.98 Seven Networks
7.99 Siklu Communication
7.100 SK Telesys
7.101 SpiderCloud Wireless
7.102 Star Solutions
7.103 Tarana Wireless
7.104 Tecore
7.105 TEKTELIC Communications
7.106 Telrad Networks
7.107 Telum
7.108 TEOCO
7,109 TI (Texas Instruments)
7.110 TP-Link Technologies
7.111 TTG International
7.112 Tulinx
7.113 Vasona Networks
7.114 Viavi Solutions
7.115 WebRadar
7.116 WNC (Wistron NeWeb Corporation)
7.117 WPOTECH
7.118 XCellAir
7.119 Z-Com (ZDC Wireless)
7.120 ZTE
7.121 ZyXEL Communications Corporation
8 CHAPTER 8: MARKET ANALYSIS & FORECASTS
8.1 SON & Mobile Network Optimization Revenue
8.2 SON Revenue
8.3 SON Revenue by Network Segment
8.3.1 Conventional Macrocell RAN
8.3.2 HetNet RAN
8.3.3 Mobile Core
8.3.4 Mobile Backhaul & Fronthaul
8.4 SON Revenue by Architecture: Centralized vs. Distributed
8.4.1 C-SON
8.4.2 D-SON
8.5 SON Revenue by Access Network Technology
8.5.1 2G & 3G
8.5.2 LTE
8.5.3 Wi-Fi
8.5.4 5G
8.6 SON Revenue by Region
8.7 Conventional Mobile Network Planning & Optimization Revenue
8.8 Conventional Mobile Network Planning & Optimization Revenue by Region
8.9 Asia Pacific
8.9.1 SON
8.9.2 Conventional Mobile Network Planning & Optimization
8.10 Eastern Europe
8.10.1 SON
8.10.2 Conventional Mobile Network Planning & Optimization
8.11 Latin & Central America
8.11.1 SON
8.11.2 Conventional Mobile Network Planning & Optimization
8.12 Middle East & Africa
8.12.1 SON
8.12.2 Conventional Mobile Network Planning & Optimization
8.13 North America
8.13.1 SON
8.13.2 Conventional Mobile Network Planning & Optimization
8.14 Western Europe
8.14.1 SON
8.14.2 Conventional Mobile Network Planning & Optimization
8.15 Top Country Markets
8.15.1 Australia
8.15.2 Brazil
8.15.3 Canada
8.15.4 China
8.15.5 France
8.15.6 Germany
8.15.7 India
8.15.8 Italy
8.15.9 Japan
8.15.10 Russia
8.15.11 South Korea
8.15.12 Spain
8.15.13 Taiwan
8.15.14 UK
8.15.15 USA
9 CHAPTER 9: KEY TRENDS, CONCLUSION & STRATEGIC RECOMMENDATIONS
9.1 Moving Towards QoE Based SON Platforms
9.2 Capitalizing on DPI (Deep Packet Inspection)
9.3 The Convergence of Big Data, Predictive Analytics & SON
9.4 Optimizing M2M & IoT Services
9.5 SON for NFV & SDN: The Push from Mobile Operators
9.6 Moving Towards Mobile Core and Transport Networks
9.7 Assessing the Impact of SON on Optimization & Field Engineers
9.8 Impact of Unlicensed LTE Small Cells
9.9 Growing Adoption of SON Capabilities for Wi-Fi
9.10 SON Associated OpEx Savings: The Numbers
9.11 What SON Capabilities Will 5G Networks Entail?
9.11.1 Predictive Resource Allocation
9.11.2 Addressing D2D (Device-to-Device) Communications & New Use Cases
9.11.3 User-Based Profiling & Optimization for Vertical 5G Applications
9.11.4 Greater Focus on Self-Protection Capabilities
9.12 The C-SON Versus D-SON Debate
9.13 Strategic Recommendations
9.13.1 SON & Conventional Mobile Network Optimization Solution Providers
9.13.2 Wireless Infrastructure OEMs
9.13.3 Mobile Operators
1.1 Executive Summary
1.2 Topics Covered
1.3 Forecast Segmentation
1.4 Key Questions Answered
1.5 Key Findings
1.6 Methodology
1.7 Target Audience
1.8 Companies & Organizations Mentioned
2 CHAPTER 2: SON & MOBILE NETWORK OPTIMIZATION ECOSYSTEM
2.1 Conventional Mobile Network Optimization
2.1.1 Network Planning
2.1.2 Measurement Collection: Drive Tests, Probes and End User Data
2.1.3 Post-Processing, Optimization & Policy Enforcement
2.2 The SON (Self-Organizing Network) Concept
2.2.1 What is SON?
2.2.2 The Need for SON
2.3 Functional Areas of SON
2.3.1 Self-Configuration
2.3.2 Self-Optimization
2.3.3 Self-Healing
2.4 Market Drivers for SON Adoption
2.4.1 Continued Wireless Network Infrastructure Investments
2.4.2 Optimization in Multi-RAN & HetNet Environments
2.4.3 OpEx & CapEx Reduction: The Cost Saving Potential
2.4.4 Improving Subscriber Experience and Churn Reduction
2.4.5 Power Savings
2.4.6 Enabling Small Cell Deployments
2.4.7 Traffic Management
2.5 Market Barriers for SON Adoption
2.5.1 Complexity of Implementation
2.5.2 Reorganization & Changes to Standard Engineering Procedures
2.5.3 Lack of Trust in Automation
2.5.4 Lack of Operator Control: Proprietary SON Algorithms
2.5.5 Coordination between Distributed and Centralized SON
2.5.6 Network Security Concerns: New Interfaces and Lack of Monitoring
3 CHAPTER 3: SON TECHNOLOGY, USE CASES & IMPLEMENTATION ARCHITECTURES
3.1 Where Does SON Sit Within a Mobile Network?
3.1.1 RAN
3.1.2 Mobile Core
3.1.3 Mobile Backhaul & Fronthaul
3.1.4 Device-Assisted SON
3.2 SON Architecture
3.2.1 C-SON (Centralized SON)
3.2.2 D-SON (Distributed SON)
3.2.3 H-SON (Hybrid SON)
3.3 SON Use-Cases
3.3.1 Self-Configuration of Network Elements
3.3.2 Automatic Connectivity Management
3.3.3 Self-Testing of Network Elements
3.3.4 Self-Recovery of Network Elements/Software
3.3.5 Self-Healing of Board Faults
3.3.6 Automatic Inventory
3.3.7 ANR (Automatic Neighbor Relations)
3.3.8 PCI (Physical Cell ID) Configuration
3.3.9 CCO (Coverage & Capacity Optimization)
3.3.10 MRO (Mobility Robustness Optimization)
3.3.11 MLB (Mobile Load Balancing)
3.3.12 RACH (Random Access Channel) Optimization
3.3.13 ICIC (Inter-Cell Interference Coordination)
3.3.14 eICIC (Enhanced ICIC)
3.3.15 Energy Savings
3.3.16 Cell Outage Detection & Compensation
3.3.17 Self-Configuration & Optimization of Small Cells
3.3.18 Optimization of DAS (Distributed Antenna Systems)
3.3.19 RAN Aware Traffic Shaping
3.3.20 Traffic Steering in HetNets
3.3.21 Optimization of Virtualized Network Resources
3.3.22 Auto-Provisioning of Transport Links
3.3.23 Transport Network Bandwidth Optimization
3.3.24 Transport Network Interference Management
3.3.25 SON Coordination Management
3.3.26 Seamless Vendor Infrastructure Swap
4 CHAPTER 4: SON STANDARDIZATION
4.1 NGNM (Next Generation Mobile Networks) Alliance
4.1.1 Conception of the SON Initiative
4.1.2 Functional Areas and Requirements
4.1.3 Implementation Approach
4.1.4 P-SmallCell (Project Small Cell)
4.1.5 Recommendations for Multi-Vendor SON Deployment
4.2 3GPP (Third Generation Partnership Project)
4.2.1 Release
4.2.2 Release
4.2.3 Release
4.2.4 Release
4.2.5 Release 12, 13 & Beyond
4.2.6 Implementation Approach
4.3 Small Cell Forum
4.3.1 Release 7: Focus on SON for Small Cells
4.3.2 SON API
4.3.3 X2 Interoperability
4.4 WBA (Wireless Broadband Alliance)
4.4.1 SON Integration in Carrier Wi-Fi Guidelines
4.5 CableLabs
4.5.1 SON Parameter Exchange in Wi-Fi Gateway Management Specification
5 CHAPTER 5: SON DEPLOYMENT CASE STUDIES
5.1 AT&T
5.1.1 Vendor Selection
5.1.2 Implemented Use Cases
5.1.3 Results
5.2 Globe Telecom
5.2.1 Vendor Selection
5.2.2 Implemented Use Cases
5.2.3 Results
5.3 KDDI Corporation
5.3.1 Vendor Selection
5.3.2 Implemented Use Cases
5.3.3 Results
5.4 Singtel Group
5.4.1 Vendor Selection
5.4.2 Implemented Use Cases
5.4.3 Results
5.5 SK Telecom
5.5.1 Vendor Selection
5.5.2 Implemented Use Cases
5.5.3 Results
5.6 Telefónica Group
5.6.1 Vendor Selection
5.6.2 Implemented Use Cases
5.6.3 Results
5.7 TIM (Telecom Italia Mobile)
5.7.1 Vendor Selection
5.7.2 Implemented Use Cases
5.7.3 Results
5.8 Turkcell Group
5.8.1 Vendor Selection
5.8.2 Implemented Use Cases
5.8.3 Results
5.9 Vodafone Group
5.9.1 Vendor Selection
5.9.2 Implemented Use Cases
5.9.3 Results
6 CHAPTER 6: INDUSTRY ROADMAP & VALUE CHAIN
6.1 Industry Roadmap
6.1.1 Large Scale Adoption of SON Technology: 2016 - 2020
6.1.2 Towards QoE/QoS Based End-to-End SON: 2020 - 2025
6.1.3 Continued Investments to Support 5G Rollouts: 2025 - 2030
6.2 Value Chain
6.3 Embedded Technology Ecosystem
6.3.1 Chipset Developers
6.3.2 Embedded Component/Software Providers
6.4 RAN Ecosystem
6.4.1 Macrocell RAN OEMs
6.4.2 Pure-Play Small Cell OEMs
6.4.3 Wi-Fi Access Point OEMs
6.4.4 DAS & Repeater Solution Providers
6.4.5 C-RAN Solution Providers
6.4.6 Other Technology Providers
6.5 Transport Networking Ecosystem
6.5.1 Backhaul & Fronthaul Solution Providers
6.6 Mobile Core Ecosystem
6.6.1 Mobile Core Solution Providers
6.7 Connectivity Ecosystem
6.7.1 Mobile Operators
6.7.2 Wi-Fi Connectivity Providers
6.7.3 SCaaS (Small Cells as a Service) Providers
6.8 SON Ecosystem
6.8.1 SON Solution Providers
6.9 SDN & NFV Ecosystem
6.9.1 SDN & NFV Providers
7 CHAPTER 7: VENDOR LANDSCAPE
7.1 Accedian Networks
7.2 Accelleran
7.3 Accuver
7.4 AirHop Communications
7.5 Airspan Networks
7.6 Alvarion Technologies
7.7 Altiostar Networks
7.8 Amdocs
7.9 Arcadyan Technology Corporation
7.10 Argela
7.11 Aricent
7.12 ARItel
7.13 Artemis Networks
7.14 Astellia
7.15 ASUS (ASUSTeK Computer)
7.16 ATDI
7.17 Avvasi
7.18 Baicells
7.19 Belkin International
7.20 Benu Networks
7.21 BLiNQ Networks
7.22 Broadcom
7.23 Brocade Communications Systems
7.24 Casa Systems
7.25 Cavium
7.26 CBNL (Cambridge Broadband Networks Limited)
7.27 CCS (Cambridge Communication Systems)
7.28 CellMining
7.29 Cellwize
7.30 Celtro
7.31 CENTRI
7.32 Cisco Systems
7.33 Citrix Systems
7.34 Comarch
7.35 CommAgility
7.36 CommScope
7.37 Commsquare
7.38 Contela
7.39 Coriant
7.40 Datang Mobile
7.41 Dell EMC
7.42 Digitata
7.43 D-Link Corporation
7.44 ECE (European Communications Engineering)
7.45 Equiendo
7.46 Ericsson
7.47 Ercom
7.48 EXFO
7.49 Flash Networks
7.50 Forsk
7.51 Fujitsu
7.52 Gemtek Technology Company
7.53 General Dynamics Mission Systems
7.54 GoNet Systems
7.55 Guavus
7.56 GWT (Global Wireless Technologies)
7.57 Hitachi
7.58 Huawei
7.59 InfoVista
7.60 Innovile
7.61 Intel Corporation
7.62 InterDigital
7.63 Intracom Telecom
7.64 ip.access
7.65 JRC (Japan Radio Company)
7.66 Juni Global
7.67 Keysight Technologies
7.68 Kumu Networks
7.69 Lemko Corporation
7.70 Luminate Wireless
7.71 Mojo Networks
7.72 NEC Corporation
7.73 NetScout Systems
7.74 New Postcom Equipment Company
7.75 Nokia Networks
7.76 Nutaq
7.77 NXP Semiconductors
7.78 Oceus Networks
7.79 Opera Software
7.80 Optulink
7.81 Parallel Wireless
7.82 P.I.Works
7.83 Phluido
7.84 Plano Engineering
7.85 Potevio (China Potevio Company)
7.86 Qualcomm
7.87 Quanta Computer
7.88 Qucell
7.89 RADCOM
7.90 Radisys Corporation
7.91 RED Technologies
7.92 Redline Communications
7.93 Rohde & Schwarz
7.94 Samji Electronics Company
7.95 Samsung Electronics
7.96 SEDICOM
7.97 SerComm Corporation
7.98 Seven Networks
7.99 Siklu Communication
7.100 SK Telesys
7.101 SpiderCloud Wireless
7.102 Star Solutions
7.103 Tarana Wireless
7.104 Tecore
7.105 TEKTELIC Communications
7.106 Telrad Networks
7.107 Telum
7.108 TEOCO
7,109 TI (Texas Instruments)
7.110 TP-Link Technologies
7.111 TTG International
7.112 Tulinx
7.113 Vasona Networks
7.114 Viavi Solutions
7.115 WebRadar
7.116 WNC (Wistron NeWeb Corporation)
7.117 WPOTECH
7.118 XCellAir
7.119 Z-Com (ZDC Wireless)
7.120 ZTE
7.121 ZyXEL Communications Corporation
8 CHAPTER 8: MARKET ANALYSIS & FORECASTS
8.1 SON & Mobile Network Optimization Revenue
8.2 SON Revenue
8.3 SON Revenue by Network Segment
8.3.1 Conventional Macrocell RAN
8.3.2 HetNet RAN
8.3.3 Mobile Core
8.3.4 Mobile Backhaul & Fronthaul
8.4 SON Revenue by Architecture: Centralized vs. Distributed
8.4.1 C-SON
8.4.2 D-SON
8.5 SON Revenue by Access Network Technology
8.5.1 2G & 3G
8.5.2 LTE
8.5.3 Wi-Fi
8.5.4 5G
8.6 SON Revenue by Region
8.7 Conventional Mobile Network Planning & Optimization Revenue
8.8 Conventional Mobile Network Planning & Optimization Revenue by Region
8.9 Asia Pacific
8.9.1 SON
8.9.2 Conventional Mobile Network Planning & Optimization
8.10 Eastern Europe
8.10.1 SON
8.10.2 Conventional Mobile Network Planning & Optimization
8.11 Latin & Central America
8.11.1 SON
8.11.2 Conventional Mobile Network Planning & Optimization
8.12 Middle East & Africa
8.12.1 SON
8.12.2 Conventional Mobile Network Planning & Optimization
8.13 North America
8.13.1 SON
8.13.2 Conventional Mobile Network Planning & Optimization
8.14 Western Europe
8.14.1 SON
8.14.2 Conventional Mobile Network Planning & Optimization
8.15 Top Country Markets
8.15.1 Australia
8.15.2 Brazil
8.15.3 Canada
8.15.4 China
8.15.5 France
8.15.6 Germany
8.15.7 India
8.15.8 Italy
8.15.9 Japan
8.15.10 Russia
8.15.11 South Korea
8.15.12 Spain
8.15.13 Taiwan
8.15.14 UK
8.15.15 USA
9 CHAPTER 9: KEY TRENDS, CONCLUSION & STRATEGIC RECOMMENDATIONS
9.1 Moving Towards QoE Based SON Platforms
9.2 Capitalizing on DPI (Deep Packet Inspection)
9.3 The Convergence of Big Data, Predictive Analytics & SON
9.4 Optimizing M2M & IoT Services
9.5 SON for NFV & SDN: The Push from Mobile Operators
9.6 Moving Towards Mobile Core and Transport Networks
9.7 Assessing the Impact of SON on Optimization & Field Engineers
9.8 Impact of Unlicensed LTE Small Cells
9.9 Growing Adoption of SON Capabilities for Wi-Fi
9.10 SON Associated OpEx Savings: The Numbers
9.11 What SON Capabilities Will 5G Networks Entail?
9.11.1 Predictive Resource Allocation
9.11.2 Addressing D2D (Device-to-Device) Communications & New Use Cases
9.11.3 User-Based Profiling & Optimization for Vertical 5G Applications
9.11.4 Greater Focus on Self-Protection Capabilities
9.12 The C-SON Versus D-SON Debate
9.13 Strategic Recommendations
9.13.1 SON & Conventional Mobile Network Optimization Solution Providers
9.13.2 Wireless Infrastructure OEMs
9.13.3 Mobile Operators
LIST OF FIGURES
Figure 1: Functional Areas of SON within the Mobile Network Lifecycle
Figure 2: Annual Throughput of Mobile Network Data Traffic by Region: 2016 - 2030 (Exabytes)
Figure 3: Global Wireless Network Infrastructure Revenue Share by Submarket (%)
Figure 4: Global Mobile Network Data Traffic Distribution by Access Network Form Factor: 2016 - 2030 (%)
Figure 5: SON Associated OpEx & CapEx Savings by Network Segment
Figure 6: Potential Areas of SON Implementation
Figure 7: Mobile Backhaul & Fronthaul Segmentation by Technology
Figure 8: C-SON (Centralized SON) in a Mobile Operator Network
Figure 9: D-SON (Distributed SON) in a Mobile Operator Network
Figure 10: H-SON (Hybrid SON) in a Mobile Operator Network
Figure 11: NGNM SON Use Cases
Figure 12: SON Industry Roadmap: 2016 - 2030
Figure 13: Wireless Network Infrastructure Value Chain
Figure 14: Global SON & Mobile Network Optimization Revenue: 2016 - 2030 ($ Million)
Figure 15: Global SON Revenue: 2016 - 2030 ($ Million)
Figure 16: Global SON Revenue by Network Segment: 2016 - 2030 ($ Million)
Figure 17: Global Macrocell RAN SON Revenue: 2016 - 2030 ($ Million)
Figure 18: Global HetNet RAN SON Revenue: 2016 - 2030 ($ Million)
Figure 19: Global Mobile Core SON Revenue: 2016 - 2030 ($ Million)
Figure 20: Global Mobile Backhaul & Fronthaul SON Revenue: 2016 - 2030 ($ Million)
Figure 21: Global SON Revenue by Architecture: 2016 - 2030 ($ Million)
Figure 22: Global C-SON Revenue: 2016 - 2030 ($ Million)
Figure 23: Global D-SON Revenue: 2016 - 2030 ($ Million)
Figure 24: Global SON Revenue by Access Network Technology: 2016 - 2030 ($ Million)
Figure 25: Global 2G & 3G SON Revenue: 2016 - 2030 ($ Million)
Figure 26: Global LTE SON Revenue: 2016 - 2030 ($ Million)
Figure 27: Global Wi-Fi SON Revenue: 2016 - 2030 ($ Million)
Figure 28: Global 5G SON Revenue: 2020 - 2030 ($ Million)
Figure 29: SON Revenue by Region: 2016 - 2030 ($ Million)
Figure 30: Global Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 31: Conventional Mobile Network Planning & Optimization Revenue by Region: 2016 - 2030 ($ Million)
Figure 32: Asia Pacific SON Revenue: 2016 - 2030 ($ Million)
Figure 33: Asia Pacific Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 34: Eastern Europe SON Revenue: 2016 - 2030 ($ Million)
Figure 35: Eastern Europe Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 36: Latin & Central America SON Revenue: 2016 - 2030 ($ Million)
Figure 37: Latin & Central America Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 38: Middle East & Africa SON Revenue: 2016 - 2030 ($ Million)
Figure 39: Middle East & Africa Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 40: North America SON Revenue: 2016 - 2030 ($ Million)
Figure 41: North America Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 42: Western Europe SON Revenue: 2016 - 2030 ($ Million)
Figure 43: Western Europe Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 44: Australia SON Revenue: 2016 - 2030 ($ Million)
Figure 45: Brazil SON Revenue: 2016 - 2030 ($ Million)
Figure 46: Canada SON Revenue: 2016 - 2030 ($ Million)
Figure 47: China SON Revenue: 2016 - 2030 ($ Million)
Figure 48: France SON Revenue: 2016 - 2030 ($ Million)
Figure 49: Germany SON Revenue: 2016 - 2030 ($ Million)
Figure 50: India SON Revenue: 2016 - 2030 ($ Million)
Figure 51: Italy SON Revenue: 2016 - 2030 ($ Million)
Figure 52: Japan SON Revenue: 2016 - 2030 ($ Million)
Figure 53: Russia SON Revenue: 2016 - 2030 ($ Million)
Figure 54: South Korea SON Revenue: 2016 - 2030 ($ Million)
Figure 55: Spain SON Revenue: 2016 - 2030 ($ Million)
Figure 56: Taiwan SON Revenue: 2016 - 2030 ($ Million)
Figure 57: UK SON Revenue: 2016 - 2030 ($ Million)
Figure 58: USA SON Revenue: 2016 - 2030 ($ Million)
Figure 59: Global Unlicensed LTE Small Cell Unit Shipments: 2016 - 2030 (Thousands of Units)
Figure 60: Global Unlicensed LTE Small Cell Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 61: SON Associated OpEx Savings by Region: 2016 - 2030 ($ Million)
LIST OF COMPANIES MENTIONED
3GPP (Third Generation Partnership Project)
Accedian Networks
Accelleran
Accuver
Actix
Aexio
Aircom International
AirHop Communications
Airspan Networks
Alcatel-Lucent
Altiostar Networks
Alvarion Technologies
Amdocs
Anite
Arcadyan Technology Corporation
Argela
ARIB (Association of Radio Industries and Businesses, Japan)
Aricent
Arieso
ARItel
Artemis Networks
Ascom
Astellia
ASUS (ASUSTeK Computer)
AT&T
AT&T Mobility
ATDI
ATIS (Alliance for Telecommunications Industry Solutions)
Avvasi
Baicells
Belkin International
Benu Networks
BLiNQ Networks
Broadcom
Brocade Communications Systems
Bwtech
Bytemobile
CableLabs
Casa Systems
Cavium
CBNL (Cambridge Broadband Networks Limited)
CCS (Cambridge Communication Systems)
CCSA (China Communications Standards Association)
Celcite
CellMining
Cellwize
Celtro
CENTRI
Cisco Systems
Citrix Systems
Comarch
CommAgility
CommScope
Commsquare
Connectem
Contela
Coriant
CrowdX
Datang Mobile
Dell EMC
Dell Technologies
Digitata
D-Link Corporation
ECE (European Communications Engineering)
Eden Rock Communications
Equiendo
Ercom
Ericsson
ETSI (European Telecommunications Standards Institute)
EXFO
Flash Networks
Forsk
Freescale Semiconductor
Fujitsu
Gemtek Technology Company
General Dynamics Mission Systems
Globe Telecom
GoNet Systems
Guavus
GWT (Global Wireless Technologies)
Hitachi
Huawei
InfoVista
Ingenia Telecom
Innovile
Intel Corporation
InterDigital
Intracom Telecom
IP Wireless
ip.access
Ipanema Technologies
JRC (Japan Radio Company)
Juni Global
KDDI Corporation
Keysight Technologies
KKTCell (Kuzey Kıbrıs Turkcell)
Kumu Networks
Lemko Corporation
Lifecell
Linksys
Luminate Wireless
Mentum
MIMOon
Mobixell
Mojo Networks
NEC Corporation
NetScout Systems
New Postcom Equipment Company
Newfield Wireless
NGNM (Next Generation Mobile Networks) Alliance
Nokia Networks
NuRAN Wireless
Nutaq
NXP Semiconductors
Oceus Networks
Opera Software
Optimi
Optulink
P.I.Works
Parallel Wireless
Phluido
Plano Engineering
Potevio (China Potevio Company)
PureWave Networks
Qualcomm
Quanta Computer
Qucell
RADCOM
Radisys Corporation
Rearden
RED Technologies
Redline Communications
Reverb Networks
Rohde & Schwarz
Rorotika
Ruckus Wireless
Samji Electronics Company
Samsung Electronics
Schema
SEDICOM
SerComm Corporation
Seven Networks
Siklu Communication
Singtel Group
SK Group
SK Telecom
SK Telesys
Small Cell Forum
SpiderCloud Wireless
Star Solutions
SuperCom
Tarana Wireless
Tecore
TEKTELIC Communications
Tektronix Communications
Telecom Italia
Telefónica Group
Telrad Networks
Telum
TEOCO
TI (Texas Instruments)
TIM (Telecom Italia Mobile)
TIM Brasil
TP-Link Technologies
Trendium
TSDSI (Telecommunications Standards Development Society, India)
TTA (Telecommunications Technology Association of Korea)
TTC (Telecommunication Technology Committee, Japan)
TTG International
Tulinx
Turkcell Group
Vasona Networks
Vector Srl
Viavi Solutions
Vodafone Group
Vodafone Hutchison Australia
WBA (Wireless Broadband Alliance)
WebRadar
WNC (Wistron NeWeb Corporation)
WPOTECH
Xceed Technologies
XCellAir
Z-Com (ZDC Wireless)
ZTE
ZyXEL Communications Corporation
Figure 1: Functional Areas of SON within the Mobile Network Lifecycle
Figure 2: Annual Throughput of Mobile Network Data Traffic by Region: 2016 - 2030 (Exabytes)
Figure 3: Global Wireless Network Infrastructure Revenue Share by Submarket (%)
Figure 4: Global Mobile Network Data Traffic Distribution by Access Network Form Factor: 2016 - 2030 (%)
Figure 5: SON Associated OpEx & CapEx Savings by Network Segment
Figure 6: Potential Areas of SON Implementation
Figure 7: Mobile Backhaul & Fronthaul Segmentation by Technology
Figure 8: C-SON (Centralized SON) in a Mobile Operator Network
Figure 9: D-SON (Distributed SON) in a Mobile Operator Network
Figure 10: H-SON (Hybrid SON) in a Mobile Operator Network
Figure 11: NGNM SON Use Cases
Figure 12: SON Industry Roadmap: 2016 - 2030
Figure 13: Wireless Network Infrastructure Value Chain
Figure 14: Global SON & Mobile Network Optimization Revenue: 2016 - 2030 ($ Million)
Figure 15: Global SON Revenue: 2016 - 2030 ($ Million)
Figure 16: Global SON Revenue by Network Segment: 2016 - 2030 ($ Million)
Figure 17: Global Macrocell RAN SON Revenue: 2016 - 2030 ($ Million)
Figure 18: Global HetNet RAN SON Revenue: 2016 - 2030 ($ Million)
Figure 19: Global Mobile Core SON Revenue: 2016 - 2030 ($ Million)
Figure 20: Global Mobile Backhaul & Fronthaul SON Revenue: 2016 - 2030 ($ Million)
Figure 21: Global SON Revenue by Architecture: 2016 - 2030 ($ Million)
Figure 22: Global C-SON Revenue: 2016 - 2030 ($ Million)
Figure 23: Global D-SON Revenue: 2016 - 2030 ($ Million)
Figure 24: Global SON Revenue by Access Network Technology: 2016 - 2030 ($ Million)
Figure 25: Global 2G & 3G SON Revenue: 2016 - 2030 ($ Million)
Figure 26: Global LTE SON Revenue: 2016 - 2030 ($ Million)
Figure 27: Global Wi-Fi SON Revenue: 2016 - 2030 ($ Million)
Figure 28: Global 5G SON Revenue: 2020 - 2030 ($ Million)
Figure 29: SON Revenue by Region: 2016 - 2030 ($ Million)
Figure 30: Global Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 31: Conventional Mobile Network Planning & Optimization Revenue by Region: 2016 - 2030 ($ Million)
Figure 32: Asia Pacific SON Revenue: 2016 - 2030 ($ Million)
Figure 33: Asia Pacific Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 34: Eastern Europe SON Revenue: 2016 - 2030 ($ Million)
Figure 35: Eastern Europe Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 36: Latin & Central America SON Revenue: 2016 - 2030 ($ Million)
Figure 37: Latin & Central America Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 38: Middle East & Africa SON Revenue: 2016 - 2030 ($ Million)
Figure 39: Middle East & Africa Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 40: North America SON Revenue: 2016 - 2030 ($ Million)
Figure 41: North America Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 42: Western Europe SON Revenue: 2016 - 2030 ($ Million)
Figure 43: Western Europe Conventional Mobile Network Planning & Optimization Revenue: 2016 - 2030 ($ Million)
Figure 44: Australia SON Revenue: 2016 - 2030 ($ Million)
Figure 45: Brazil SON Revenue: 2016 - 2030 ($ Million)
Figure 46: Canada SON Revenue: 2016 - 2030 ($ Million)
Figure 47: China SON Revenue: 2016 - 2030 ($ Million)
Figure 48: France SON Revenue: 2016 - 2030 ($ Million)
Figure 49: Germany SON Revenue: 2016 - 2030 ($ Million)
Figure 50: India SON Revenue: 2016 - 2030 ($ Million)
Figure 51: Italy SON Revenue: 2016 - 2030 ($ Million)
Figure 52: Japan SON Revenue: 2016 - 2030 ($ Million)
Figure 53: Russia SON Revenue: 2016 - 2030 ($ Million)
Figure 54: South Korea SON Revenue: 2016 - 2030 ($ Million)
Figure 55: Spain SON Revenue: 2016 - 2030 ($ Million)
Figure 56: Taiwan SON Revenue: 2016 - 2030 ($ Million)
Figure 57: UK SON Revenue: 2016 - 2030 ($ Million)
Figure 58: USA SON Revenue: 2016 - 2030 ($ Million)
Figure 59: Global Unlicensed LTE Small Cell Unit Shipments: 2016 - 2030 (Thousands of Units)
Figure 60: Global Unlicensed LTE Small Cell Unit Shipment Revenue: 2016 - 2030 ($ Million)
Figure 61: SON Associated OpEx Savings by Region: 2016 - 2030 ($ Million)
LIST OF COMPANIES MENTIONED
3GPP (Third Generation Partnership Project)
Accedian Networks
Accelleran
Accuver
Actix
Aexio
Aircom International
AirHop Communications
Airspan Networks
Alcatel-Lucent
Altiostar Networks
Alvarion Technologies
Amdocs
Anite
Arcadyan Technology Corporation
Argela
ARIB (Association of Radio Industries and Businesses, Japan)
Aricent
Arieso
ARItel
Artemis Networks
Ascom
Astellia
ASUS (ASUSTeK Computer)
AT&T
AT&T Mobility
ATDI
ATIS (Alliance for Telecommunications Industry Solutions)
Avvasi
Baicells
Belkin International
Benu Networks
BLiNQ Networks
Broadcom
Brocade Communications Systems
Bwtech
Bytemobile
CableLabs
Casa Systems
Cavium
CBNL (Cambridge Broadband Networks Limited)
CCS (Cambridge Communication Systems)
CCSA (China Communications Standards Association)
Celcite
CellMining
Cellwize
Celtro
CENTRI
Cisco Systems
Citrix Systems
Comarch
CommAgility
CommScope
Commsquare
Connectem
Contela
Coriant
CrowdX
Datang Mobile
Dell EMC
Dell Technologies
Digitata
D-Link Corporation
ECE (European Communications Engineering)
Eden Rock Communications
Equiendo
Ercom
Ericsson
ETSI (European Telecommunications Standards Institute)
EXFO
Flash Networks
Forsk
Freescale Semiconductor
Fujitsu
Gemtek Technology Company
General Dynamics Mission Systems
Globe Telecom
GoNet Systems
Guavus
GWT (Global Wireless Technologies)
Hitachi
Huawei
InfoVista
Ingenia Telecom
Innovile
Intel Corporation
InterDigital
Intracom Telecom
IP Wireless
ip.access
Ipanema Technologies
JRC (Japan Radio Company)
Juni Global
KDDI Corporation
Keysight Technologies
KKTCell (Kuzey Kıbrıs Turkcell)
Kumu Networks
Lemko Corporation
Lifecell
Linksys
Luminate Wireless
Mentum
MIMOon
Mobixell
Mojo Networks
NEC Corporation
NetScout Systems
New Postcom Equipment Company
Newfield Wireless
NGNM (Next Generation Mobile Networks) Alliance
Nokia Networks
NuRAN Wireless
Nutaq
NXP Semiconductors
Oceus Networks
Opera Software
Optimi
Optulink
P.I.Works
Parallel Wireless
Phluido
Plano Engineering
Potevio (China Potevio Company)
PureWave Networks
Qualcomm
Quanta Computer
Qucell
RADCOM
Radisys Corporation
Rearden
RED Technologies
Redline Communications
Reverb Networks
Rohde & Schwarz
Rorotika
Ruckus Wireless
Samji Electronics Company
Samsung Electronics
Schema
SEDICOM
SerComm Corporation
Seven Networks
Siklu Communication
Singtel Group
SK Group
SK Telecom
SK Telesys
Small Cell Forum
SpiderCloud Wireless
Star Solutions
SuperCom
Tarana Wireless
Tecore
TEKTELIC Communications
Tektronix Communications
Telecom Italia
Telefónica Group
Telrad Networks
Telum
TEOCO
TI (Texas Instruments)
TIM (Telecom Italia Mobile)
TIM Brasil
TP-Link Technologies
Trendium
TSDSI (Telecommunications Standards Development Society, India)
TTA (Telecommunications Technology Association of Korea)
TTC (Telecommunication Technology Committee, Japan)
TTG International
Tulinx
Turkcell Group
Vasona Networks
Vector Srl
Viavi Solutions
Vodafone Group
Vodafone Hutchison Australia
WBA (Wireless Broadband Alliance)
WebRadar
WNC (Wistron NeWeb Corporation)
WPOTECH
Xceed Technologies
XCellAir
Z-Com (ZDC Wireless)
ZTE
ZyXEL Communications Corporation