[email protected] +44 20 8123 2220 (UK) +1 732 587 5005 (US) Contact Us | FAQ |

In Situ Hybridization Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented by Product (Consumables, Instruments, Software), By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization), By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology), By End user (Hospitals and Diagnostic Laboratories, Academic & Research Institutes, Pharmaceutical & Biotechnology Companies, Contract Research Organizations), By Region and By Competition

October 2023 | 183 pages | ID: I5A75F1903A3EN
TechSci Research

US$ 4,500.00

E-mail Delivery (PDF)

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
The In Situ Hybridization market was valued at USD 1.53 Billion in 2022, and is poised for remarkable growth with a CAGR Of 7.29% by 2028.. This can be attributed to the heightened awareness surrounding genetic disorders, propelled by the emergence of novel viruses such as COVID-19. Additionally, the escalating demand for molecular diagnostic tools, coupled with the increasing adoption of in situ hybridization technology, is poised to underpin the market's growth in the forthcoming years.

Furthermore, the surging prevalence of genetic disorders within the population is poised to be a pivotal driver of growth during the forecast period. Simultaneously, the strategic initiatives undertaken by various market players, including partnerships, acquisitions, and mergers, aimed at the advancement of in situ hybridization techniques, are expected to exert a substantial positive impact on market growth throughout the forecast period.

Illustrating this trend, the U.S. National Cancer Institute reported a staggering count of 1,898,160 new cancer cases and 608,570 cancer-related fatalities in the United States during 2021. Notably, the World Health Organization's data emphasizes that, by September 2021, a significant 70% of cancer-related deaths were concentrated in low- and middle-income nations.

Growing prevalence of chronic diseases

Chronic ailments wield substantial influence over the trajectory of the global in situ hybridization market. Conditions encompassing cancer, autoimmune diseases, and infectious diseases exhibit a hallmark of genetic aberrations or mutations within cells, lending themselves to detection and visualization through in situ hybridization techniques. The utility of in situ hybridization resides in its ability to identify and pinpoint specific nucleic acid sequences linked to these maladies, thereby enabling timely diagnoses and precision therapies.

The mounting prevalence of chronic diseases propels the demand for in situ hybridization across diagnostic and research applications. In accordance with data from the World Health Organization (WHO), chronic diseases stand as the primary cause of worldwide mortality, accounting for a substantial 71% of all global deaths. Among these, cancer holds significant prominence, contributing significantly to the global chronic disease burden with an estimated 18.1 million new cases and 9.6 million fatalities in 2018. In the realm of cancer, in situ hybridization emerges as a pivotal tool, underpinning diagnosis, prognosis, and treatment. Its prowess in identifying specific genetic aberrations like gene amplification, gene fusion, or gene expression changes guides treatment decisions, tracks disease progression, and predicts therapeutic outcomes.

Beyond cancer, in situ hybridization extends its sphere of influence to encompass other chronic conditions such as infectious diseases and autoimmune disorders. For instance, its application spans the detection of distinct viral or bacterial nucleic acid sequences within infected cells or tissues, facilitating prompt diagnoses and targeted interventions.

Advancements in molecular biology and genetics

The evolution of molecular biology has wielded a substantial influence over the expansion of the global in situ hybridization market. Positioned within the realm of molecular biology, in situ hybridization constitutes a technique facilitating the precise detection and localization of specific nucleic acid sequences within cells or tissues. Recent technological progressions in molecular biology have significantly elevated the sensitivity, specificity, and precision of in situ hybridization assays.

Advancements in the design and synthesis of probes have notably augmented the specificity and sensitivity of in situ hybridization assays. Locked nucleic acid (LNA) probes, for instance, represent a breakthrough development enabling the discernment of low-abundance nucleic acid targets with heightened specificity and sensitivity. Likewise, refinements in labeling and signal amplification techniques have elevated the signal-to-noise ratio of in situ hybridization assays, enabling the discernment of faint signals and low-abundance targets.

The strides in imaging and microscopy have additionally contributed to the augmentation of the in situ hybridization market. Advanced microscopy methods such as confocal microscopy and super-resolution microscopy have substantially heightened the spatial resolution of in situ hybridization assays, thereby facilitating the visualization of subcellular structures and molecular interactions.

Moreover, contemporary molecular biology achievements have paved the way for novel applications of in situ hybridization. For example, fluorescence in situ hybridization (FISH) has evolved to facilitate the simultaneous detection of multiple nucleic acid targets, enabling the analysis of intricate genetic interactions and gene expression patterns. Furthermore, the progress in RNA in situ hybridization techniques has empowered the detection of non-coding RNAs, pivotal players in gene regulation and the genesis of diseases.

Growing demand for personalized medicine

Personalized medicine stands as a pivotal catalyst propelling the expansion of the global in situ hybridization market. This healthcare approach revolves around tailoring treatments to individual patients based on their unique genetic composition, lifestyle, and environmental influences. The pivotal role of in situ hybridization in this paradigm lies in its capacity to unearth specific genetic mutations or biomarkers linked to distinct ailments, thus rendering it a critical tool in personalized medicine's development.

Techniques such as fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH) within the in situ hybridization spectrum come to the fore in detecting targeted genetic mutations or alterations tied to diverse conditions, including cancer. These insights equip physicians to curate optimal treatment pathways for each patient, elevating treatment efficacy while mitigating untoward side effects.

The pervasive role of in situ hybridization extends to the realm of companion diagnostics, which function as tests identifying patients most likely to benefit from specific treatments. Leveraged for patient selection in clinical trials, treatment response monitoring, and dosage adjustments, companion diagnostics enhance patient outcomes and mitigate healthcare expenditures.

The trajectory of in situ hybridization's role within personalized medicine is poised for a significant expansion in the foreseeable future. This impetus stems from the growing availability of genetic information and an escalating demand for precision therapies. The concurrent development of innovative in situ hybridization technologies and assays is set to amplify the evolution of the global in situ hybridization market.

Increasing research and development activities

Research and development endeavors exert a pronounced influence over the expansion of the global in situ hybridization market. As an ever-evolving technique, in situ hybridization's growth hinges on the continual creation of novel assays and technologies that extend its application spectrum while enhancing the precision, sensitivity, specificity, and accuracy of its assays. Within the in situ hybridization domain, research and development activities pivot around the refinement of probes, optimization of labeling and signal amplification techniques, and the advancement of imaging and microscopy methodologies.

For instance, the advent of innovative probe technologies like peptide nucleic acid (PNA) probes and locked nucleic acid (LNA) probes has elicited significant enhancements in the sensitivity and specificity of in situ hybridization assays. Progressions in labeling and signal amplification techniques, typified by tyramide signal amplification (TSA), have bolstered the signal-to-noise ratio of these assays, thereby enabling the discernment of faint signals and low-abundance targets. In tandem, the evolution of imaging and microscopy technologies has contributed to the growth trajectory of the in situ hybridization market. High-resolution microscopy modalities such as confocal microscopy and super-resolution microscopy have markedly elevated the spatial resolution of in situ hybridization assays, facilitating the visualization of subcellular structures and molecular interactions.

Furthermore, the purview of research and development initiatives spans the exploration of fresh applications for in situ hybridization. A noteworthy illustration is the technique's employment in studying the distribution and expression patterns of non-coding RNAs. This specific avenue assumes significance due to non-coding RNAs' pivotal role in gene regulation and the progression of diseases.

Rising healthcare expenditure

Healthcare expenditure stands as a pivotal determinant influencing the expansion of the global in situ hybridization market. The surge in demand for in situ hybridization assays and technologies is inherently intertwined with the imperative for precise and dependable diagnostic tools and therapies across a spectrum of maladies, notably cancer. This surge is intrinsically tied to escalating healthcare expenditure, particularly evident in advanced economies, where substantial investments are directed towards research and development activities and the adoption of cutting-edge healthcare technologies. This concerted impetus has engendered the creation of novel and inventive in situ hybridization technologies and assays, characterized by heightened accuracy, sensitivity, specificity, and applicability.

Furthermore, the nexus between healthcare expenditure and the provision of healthcare services, encompassing diagnostic tools and therapies, serves as a linchpin propelling the in-situ hybridization market's growth. Elevated healthcare expenditure has underpinned the emergence of enhanced healthcare infrastructure, encomassning hospitals, clinics, and laboratories, therein augmenting the availability and accessibility of diagnostic tools, including in situ hybridization assays.

In parallel, the escalating healthcare expenditure landscape has galvanized the advance of personalized medicine, which, in turn, buttresses the expansion of the in-situ hybridization market. Personalized medicine underscores treatment customization aligned with patients' genetic composition, lifestyle, and environmental influences. Notably, in situ hybridization's pivotal role in personalized medicine is underscored by its capability to identify specific genetic mutations or biomarkers linked to distinct ailments. This synergy fuels the market's growth trajectory.

Market Segmentation

Global In Situ Hybridization market can be segmented on the basis of product, technology, application, end user and region. Based on product, the market can be further divided into consumables, instruments, and software. Based on technology, the market can be further divided into fluorescent in situ hybridization v/s chromogenic in situ hybridization. Based on application, the market can be further divided into cancer diagnostics, cytology, infectious diseases diagnostics, neuroscience, and immunology. Based on end user, the market is further divided into hospitals and diagnostic laboratories, academic & research institutes, pharmaceutical & biotechnology companies, and contract research organizations.

Market Players

Abbott Laboratories., F. Hoffmann Roche AG., Thermo Fisher Scientific Inc., Danaher Corp., Agilent Technologies Inc., Biocare Medical LLC., Biotechne Corporation., Qiagen N.V, Merck KGAA., Perkinelmer Inc. are some of the leading players operating in the global In Situ Hybridization market.

Report Scope:

In this report, Global In Situ Hybridization market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
  • In Situ Hybridization Market, By Product:
  • Consumables
  • Instruments
  • Software
  • In Situ Hybridization Market, By Technology:
  • Fluorescent in situ hybridization
  • Chromogenic in situ hybridization
  • In Situ Hybridization Market, By Application:
  • Cancer Diagnostics
  • Cytology
  • Infectious diseases diagnostics
  • Neuroscience
  • Immunology
  • In Situ Hybridization Market, By End User:
  • Hospitals and Diagnostic laboratories
  • Academic & Research institutes
  • Pharmaceutical & Biotechnology companies
  • Contract research organizations
  • In Situ Hybridization Market, By Region:
  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • Germany
  • United Kingdom
  • Italy
  • Spain
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Australia
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global In Situ Hybridization Market.

Available Customizations:

With the given market data, TechSci Research offers customizations according to a company’s specific needs. The following customization options are available for the report:

Company Information
  • Detailed analysis and profiling of additional market players (up to five).
1. PRODUCT OVERVIEW

1.1. Market Definition
1.2. Scope of the Market
  1.2.1. Markets Covered
  1.2.2. Years Considered for Study
  1.2.3. Key Market Segmentations

2. RESEARCH METHODOLOGY

2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations

3. EXECUTIVE SUMMARY

3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends

4. VOICE OF CUSTOMER

5. GLOBAL IN SITU HYBRIDIZATION MARKET OUTLOOK

5.1. Market Size & Forecast
  5.1.1. By Value
5.2. Market Share & Forecast
  5.2.1. By Product (Consumables, Instruments, Software)
  5.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
  5.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
  5.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
  5.2.5. By Region (North America, Europe, Asia Pacific, South America, Middle East & Africa)
  5.2.6. By Company (2022)
5.3. Market Map
  5.3.1 By Product
  5.3.2 By Technology
  5.3.3 By Application
  5.3.4 By End User
  5.3.5 By Region

6. NORTH AMERICA IN SITU HYBRIDIZATION MARKET OUTLOOK

6.1. Market Size & Forecast
  6.1.1. By Value
6.2. Market Share & Forecast
  6.2.1. By Product (Consumables, Instruments, Software)
  6.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
  6.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
  6.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
  6.2.5. By Country
6.3. North America: Country Analysis
  6.3.1. United States In Situ Hybridization Market Outlook
    6.3.1.1. Market Size & Forecast
      6.3.1.1.1. By Value
    6.3.1.2. Market Share & Forecast
      6.3.1.2.1. By Product
      6.3.1.2.2. By Technology
      6.3.1.2.3. By Application
      6.3.1.2.4. By End User
  6.3.2. Canada In Situ Hybridization Market Outlook
    6.3.2.1. Market Size & Forecast
      6.3.2.1.1. By Value
    6.3.2.2. Market Share & Forecast
      6.3.2.2.1. By Product
      6.3.2.2.2. By Technology
      6.3.2.2.3. By Application
      6.3.2.2.4. By End User
  6.3.3. Mexico In Situ Hybridization Market Outlook
    6.3.3.1. Market Size & Forecast
      6.3.3.1.1. By Value
    6.3.3.2. Market Share & Forecast
      6.3.3.2.1. By Product
      6.3.3.2.2. By Technology
      6.3.3.2.3. By Application
      6.3.3.2.4. By End User

7. EUROPE IN SITU HYBRIDIZATION MARKET OUTLOOK

7.1. Market Size & Forecast
  7.1.1. By Value
7.2. Market Share & Forecast
  7.2.1. By Product (Consumables, Instruments, Software)
  7.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
  7.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
  7.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
  7.2.5. By Country
7.3. Europe: Country Analysis
  7.3.1. France In Situ Hybridization Market Outlook
    7.3.1.1. Market Size & Forecast
      7.3.1.1.1. By Value
    7.3.1.2. Market Share & Forecast
      7.3.1.2.1. By Product
      7.3.1.2.2. By Technology
      7.3.1.2.3. By Application
      7.3.1.2.4. By End User
  7.3.2. Germany In Situ Hybridization Market Outlook
    7.3.2.1. Market Size & Forecast
      7.3.2.1.1. By Value
    7.3.2.2. Market Share & Forecast
      7.3.2.2.1. By Product
      7.3.2.2.2. By Technology
      7.3.2.2.3. By Application
      7.3.2.2.4. By End User
  7.3.3. United Kingdom In Situ Hybridization Market Outlook
    7.3.3.1. Market Size & Forecast
      7.3.3.1.1. By Value
    7.3.3.2. Market Share & Forecast
      7.3.3.2.1. By Product
      7.3.3.2.2. By Technology
      7.3.3.2.3. By Application
      7.3.3.2.4. By End User
  7.3.4. Italy In Situ Hybridization Market Outlook
    7.3.4.1. Market Size & Forecast
      7.3.4.1.1. By Value
    7.3.4.2. Market Share & Forecast
      7.3.4.2.1. By Product
      7.3.4.2.2. By Technology
      7.3.4.2.3. By Application
      7.3.4.2.4. By End User
  7.3.5. Spain In Situ Hybridization Market Outlook
    7.3.5.1. Market Size & Forecast
      7.3.5.1.1. By Value
    7.3.5.2. Market Share & Forecast
      7.3.5.2.1. By Product
      7.3.5.2.2. By Technology
      7.3.5.2.3. By Application
      7.3.5.2.4. By End User

8. ASIA-PACIFIC IN SITU HYBRIDIZATION MARKET OUTLOOK

8.1. Market Size & Forecast
  8.1.1. By Value
8.2. Market Share & Forecast
  8.2.1. By Product (Consumables, Instruments, Software)
  8.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
  8.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
  8.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
  8.2.5. By Country
8.3. Asia-Pacific: Country Analysis
  8.3.1. China In Situ Hybridization Market Outlook
    8.3.1.1. Market Size & Forecast
      8.3.1.1.1. By Value
    8.3.1.2. Market Share & Forecast
      8.3.1.2.1. By Product
      8.3.1.2.2. By Technology
      8.3.1.2.3. By Application
      8.3.1.2.4. By End User
  8.3.2. India In Situ Hybridization Market Outlook
    8.3.2.1. Market Size & Forecast
      8.3.2.1.1. By Value
    8.3.2.2. Market Share & Forecast
      8.3.2.2.1. By Product
      8.3.2.2.2. By Technology
      8.3.2.2.3. By Application
      8.3.2.2.4. By End User
  8.3.3. Japan In Situ Hybridization Market Outlook
    8.3.3.1. Market Size & Forecast
      8.3.3.1.1. By Value
    8.3.3.2. Market Share & Forecast
      8.3.3.2.1. By Product
      8.3.3.2.2. By Technology
      8.3.3.2.3. By Application
      8.3.3.2.4. By End User
  8.3.4. South Korea In Situ Hybridization Market Outlook
    8.3.4.1. Market Size & Forecast
      8.3.4.1.1. By Value
    8.3.4.2. Market Share & Forecast
      8.3.4.2.1. By Product
      8.3.4.2.2. By Technology
      8.3.4.2.3. By Application
      8.3.4.2.4. By End User
  8.3.5. Australia In Situ Hybridization Market Outlook
    8.3.5.1. Market Size & Forecast
      8.3.5.1.1. By Value
    8.3.5.2. Market Share & Forecast
      8.3.5.2.1. By Product
      8.3.5.2.2. By Technology
      8.3.5.2.3. By Application
      8.3.5.2.4. By End User

9. SOUTH AMERICA IN SITU HYBRIDIZATION MARKET OUTLOOK

9.1. Market Size & Forecast
  9.1.1. By Value
9.2. Market Share & Forecast
  9.2.1. By Product (Consumables, Instruments, Software)
  9.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
  9.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
  9.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
  9.2.5. By Country
9.3. South America: Country Analysis
  9.3.1. Brazil In Situ Hybridization Market Outlook
    9.3.1.1. Market Size & Forecast
      9.3.1.1.1. By Value
    9.3.1.2. Market Share & Forecast
      9.3.1.2.1. By Product
      9.3.1.2.2. By Technology
      9.3.1.2.3. By Application
      9.3.1.2.4. By End User
  9.3.2. Argentina In Situ Hybridization Market Outlook
    9.3.2.1. Market Size & Forecast
      9.3.2.1.1. By Value
    9.3.2.2. Market Share & Forecast
      9.3.2.2.1. By Product
      9.3.2.2.2. By Technology
      9.3.2.2.3. By Application
      9.3.2.2.4. By End User
  9.3.3. Colombia In Situ Hybridization Market Outlook
    9.3.3.1. Market Size & Forecast
      9.3.3.1.1. By Value
    9.3.3.2. Market Share & Forecast
      9.3.3.2.1. By Product
      9.3.3.2.2. By Technology
      9.3.3.2.3. By Application
      9.3.3.2.4. By End User

10. MIDDLE EAST AND AFRICA IN SITU HYBRIDIZATION MARKET OUTLOOK

10.1. Market Size & Forecast
  10.1.1. By Value
10.2. Market Share & Forecast
  10.2.1. By Product (Consumables, Instruments, Software)
  10.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
  10.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
  10.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
  10.2.5. By Country
10.3. MEA: Country Analysis
  10.3.1. South Africa In Situ Hybridization Market Outlook
    10.3.1.1. Market Size & Forecast
      10.3.1.1.1. By Value
    10.3.1.2. Market Share & Forecast
      10.3.1.2.1. By Product
      10.3.1.2.2. By Technology
      10.3.1.2.3. By Application
      10.3.1.2.4. By End User
  10.3.2. Saudi Arabia In Situ Hybridization Market Outlook
    10.3.2.1. Market Size & Forecast
      10.3.2.1.1. By Value
    10.3.2.2. Market Share & Forecast
      10.3.2.2.1. By Product
      10.3.2.2.2. By Technology
      10.3.2.2.3. By Application
      10.3.2.2.4. By End User
  10.3.3. UAE In Situ Hybridization Market Outlook
    10.3.3.1. Market Size & Forecast
      10.3.3.1.1. By Value
    10.3.3.2. Market Share & Forecast
      10.3.3.2.1. By Product
      10.3.3.2.2. By Technology
      10.3.3.2.3. By Application
      10.3.3.2.4. By End User

11. MARKET DYNAMICS

11.1. Drivers
11.2. Challenges

12. MARKET TRENDS & DEVELOPMENTS

12.1. Recent Development
12.2. Mergers & Acquisitions
12.3. Product Launches

13. GLOBAL IN SITU HYBRIDIZATION MARKET: SWOT ANALYSIS

14. PORTER’S FIVE FORCES ANALYSIS

14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products

15. COMPETITIVE LANDSCAPE

15.1. Business Overview
15.2. Product Offerings
15.3. Recent Developments
15.4. Financials (As Reported)
15.5. Key Personnel
15.6. SWOT Analysis
  15.6.1 Abbott Laboratories.
  15.6.2 F. Hoffmann Roche AG.
  15.6.3 Thermo Fisher Scientific Inc.
  15.6.4 Danaher Corp.
  15.6.5 Agilent Technologies Inc.
  15.6.6 Biocare Medical LLC.
  15.6.7 Biotechne Corporation.
  15.6.8 Qiagen N.V
  15.6.9 Merck KGAA.
  15.6.10 Perkinelmer Inc.

16. STRATEGIC RECOMMENDATIONS



More Publications