[email protected] +44 20 8123 2220 (UK) +1 732 587 5005 (US) Contact Us | FAQ |

Healthcare Robotics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Product (Surgical Robots, Telemedicine Robots, Rehabilitation Robots, Non-invasive Radiosurgery Robots, Pharmacy and Hospital Automation Robots), By Application (Neurology Applications, Cardiology Applications, Orthopedic Applications, Laparoscopic Applications, Others), By End User (Hospitals, Specialty Clinics, Research Institutes, Ambulatory Surgical Centers, Laboratories, Rehabilitation Centers, Others), By Region and Competition, 2019-2029F

May 2024 | 184 pages | ID: H127B1D1CFF3EN
TechSci Research

US$ 4,500.00

E-mail Delivery (PDF)

Download PDF Leaflet

Accepted cards
Wire Transfer
Checkout Later
Need Help? Ask a Question
Global Healthcare Robotics Market was valued at USD 8.08 Billion in 2023 and is anticipated t%li%project robust growth in the forecast period with a CAGR of 8.74% through 2029. Medical Robots are professional service robots utilized in both hospital and non-hospital settings t%li%elevate the overall level of patient care. The rising geriatric population and the demand for minimally invasive surgeries have contributed t%li%the adoption of medical robots, which have proven t%li%be cost-effective. Today, Medical Robots are applied in various applications such as telepresence robots for remote caregiving, disinfectant robots t%li%prevent hospital-acquired infections, and robotic exoskeletons that provide external support and muscle training for rehabilitation purposes. They are als%li%utilized for the safe delivery of medication and other sensitive materials within hospital settings. The issuance of IPOs by the Healthcare Industry of India is anticipated t%li%further drive market growth.

Key Market Drivers

Increasing Prevalence of Diseases like Neurological Disorders, Orthopedic Surgery

The increasing prevalence of diseases like neurological disorders and the growth of orthopedic surgery are driving the demand for healthcare robotics. Healthcare robotics encompasses the use of robotic technologies in medical applications t%li%enhance patient care, improve surgical precision, and optimize treatment outcomes. Both neurological disorders and orthopedic surgeries often require high levels of precision and safety. Healthcare robotics can provide steady hands and intricate movements that are challenging for human surgeons alone, leading t%li%better outcomes and reducing the risk of complications. The demand for specialized surgeons in areas like neurology and orthopedics often exceeds the available supply. Robotic systems allow less-experienced surgeons t%li%perform complex procedures with a higher degree of accuracy, helping address this skill shortage. Robotics can offer personalized treatment plans for patients, considering their unique anatomy and condition. This patient-centric approach is especially valuable in neurological disorders and orthopedic surgeries, where individualized care is crucial.

Rising Global Geriatric Population

The rising global geriatric population is significantly increasing the demand for healthcare robotics. As the number of elderly individuals continues t%li%grow, there is a greater need for innovative technologies that can support their healthcare needs, improve their quality of life, and alleviate the burden on healthcare systems. Healthcare robotics offer various solutions that cater t%li%the specific challenges and requirements of aging populations. Healthcare robots can assist elderly individuals with activities of daily living (ADLs) such as bathing, dressing, eating, and mobility. These robots can help maintain independence and reduce the need for constant caregiver assistance. Healthcare robotics enables remote monitoring of vital signs and health conditions. This is particularly useful for elderly individuals with chronic conditions, allowing healthcare providers t%li%intervene quickly if health parameters deviate from the norm.

Introduction of Cost-effective Medical Robots

The introduction of cost-effective medical robots can significantly boost the demand for healthcare robotics. Cost-effective solutions address one of the key barriers t%li%adopting robotic technologies in healthcare settings: affordability. As medical robots become more accessible in terms of pricing, various healthcare providers, institutions, and regions can consider incorporating these technologies int%li%their practices. The affordability of cost-effective medical robots makes them accessible t%li%a broader range of healthcare providers, including smaller clinics, community hospitals, and healthcare facilities in resource-limited areas. This wider adoption leads t%li%increased demand. Larger medical robots can be expensive t%li%acquire and maintain, often limiting their use t%li%well-funded hospitals. Cost-effective alternatives allow smaller healthcare institutions t%li%benefit from robotic technologies, leading t%li%increased demand across various healthcare settings. Cost-effective medical robots can be developed for specific applications, such as telemedicine, remote monitoring, diagnostics, or rehabilitation. These focused solutions cater t%li%specific needs and generate demand for targeted applications. In surgical settings, cost-effective robotic systems can make robot-assisted procedures more accessible. Surgeons and healthcare providers interested in incorporating robotic precision int%li%their procedures are more likely t%li%adopt these technologies when they are cost-effective.

Growing preference for Minimally Invasive Surgery

The growing preference for minimally invasive surgery (MIS) is a significant factor driving the demand for healthcare robotics. Minimally invasive techniques involve smaller incisions, reduced trauma t%li%surrounding tissues, faster recovery times, and shorter hospital stays. Robotic technologies are well-suited t%li%enhance the capabilities of surgeons in performing complex procedures with precision and dexterity, making them a natural fit for MIS. Robotic systems provide surgeons with enhanced precision and control, allowing them t%li%perform intricate tasks with greater accuracy. This is especially crucial in MIS, where precision is essential due t%li%limited visibility and confined spaces. Robotic-assisted systems often include high-definition cameras and 3D visualization, providing surgeons with clear and magnified views of the surgical site. This improves accuracy and reduces the risk of errors. Robotic tools can access anatomically challenging areas through smaller incisions, minimizing tissue damage and reducing scarring. Patients prefer smaller incisions, which align with the principles of MIS. MIS combined with robotics often results in shorter hospital stays for patients. This aligns with the trend towards outpatient care and patient-centered experiences.

Key Market Challenges

High Initial Cost of Installation and Maintenance

While healthcare robots offer numerous benefits, the upfront expenses associated with acquiring, implementing, and maintaining robotic systems can be prohibitive for many healthcare institutions. Healthcare institutions, especially smaller clinics and facilities might not have the financial resources t%li%invest in expensive robotic systems. Budget limitations can deter them from considering healthcare robotics, even if the long-term benefits are evident. While healthcare robotics can lead t%li%long-term cost savings and improved patient outcomes, the initial investment can be difficult t%li%justify without a clear understanding of the potential ROI. Institutions might be hesitant t%li%commit t%li%high costs without guaranteed returns. High costs associated with healthcare robots can divert resources from other critical areas of patient care and facility operations. Healthcare organizations need t%li%carefully weigh their spending priorities. In addition t%li%the initial cost of the robotic system, staff training and expertise are required t%li%operate and maintain these technologies. The associated training costs further increase the overall financial burden. Healthcare robots require regular maintenance, software updates, and technical support. These ongoing costs can add up over time, potentially straining budgets and impacting the demand for the technology. The affordability gap can be more pronounced in regions with limited healthcare resources or in institutions that primarily serve vulnerable populations. These areas might struggle t%li%allocate funds for expensive robotic systems.

Safety and Security Concerns over Robotic Surgery Devices

Safety is a paramount concern in healthcare. Any perceived or actual risk t%li%patient safety associated with robotic surgery devices can discourage healthcare providers from adopting these technologies. Concerns might include surgical errors, unintended movements of robotic arms, or complications arising from technical failures. Surgeons and healthcare providers might be concerned that using robotic systems could lead t%li%suboptimal surgical outcomes or complications, especially if they perceive the technology t%li%be less reliable than traditional surgical methods. The interaction between surgeons and robotic systems can lead t%li%potential misunderstandings, miscommunications, or unintended movements. Ensuring seamless communication and collaboration between surgeons and robots is crucial t%li%allaying these concerns. Healthcare robots often rely on digital systems and connectivity, which introduces the risk of data breaches and cyberattacks. Protecting patient data, sensitive medical information, and maintaining the integrity of robotic systems is a significant concern. Healthcare providers weigh the potential benefits of robotic surgery against the perceived risks. If safety and security concerns outweigh the benefits, the demand for healthcare robots might remain limited.

Key Market Trends

Integration of Advanced Technologies in Medical Robots

The market is expected t%li%witness growth driven by ongoing technological advancements, including motion sensors, robotic catheter control systems (CCS), 3D imaging, data recorders, data analytics, HD surgical microscopic cameras, and remote navigation. The anticipated increase in the number of products receiving FDA approval is projected t%li%contribute t%li%the expansion of the market during the forecast period. For instance, ReWalk Robotics announced in 2019 that their ReStore soft exo-suit system had received FDA approval for sale t%li%rehabilitation facilities across the United States.

Developing Economies t%li%Offer a Larger Patient Pool

Developing countries present substantial opportunities for industry participants. In the past decade, emerging regions have witnessed a steady rise in the proportion of surgical procedures, driven by a growing target patient population and the surge in medical tourism. The escalation in healthcare expenditure, coupled with adaptable and business-friendly regulatory approaches, is incentivizing key players t%li%focus their endeavors on emerging markets in the foreseeable future.

Segmental Insights

Application Insights

Based on the application, the Laparoscopic application is poised t%li%assert its dominance in the global healthcare service robot market, a dominance that hinges largely on its application across various medical procedures. Laparoscopic surgery, in particular, is anticipated t%li%lead the charge due t%li%its myriad advantages over traditional surgical methods. These advantages include faster recovery times, more effective outcomes, lower infection risks, minimal incisions, and reduced post-operative pain, all of which have contributed t%li%its growing preference among patients and healthcare professionals alike.

The increasing demand for minimally invasive surgical equipment, including laparoscopic instruments, is expected t%li%further propel the growth of the Laparoscopy segment. As healthcare providers prioritize patient safety, shorter hospital stays, and quicker return t%li%normal activities, the adoption of laparoscopic techniques continues t%li%rise globally. Looking ahead, orthopedic surgery is poised t%li%present significant opportunities within the Laparoscopy segment during the forecast period. The prevalence of orthopedic injuries and musculoskeletal conditions that impair mobility and cause considerable physical discomfort is on the rise. As a result, there is a growing demand for advanced orthopedic devices and procedures t%li%address these challenges effectively. Laparoscopic approaches in orthopedic surgery offer several advantages, including smaller incisions, reduced soft tissue trauma, and faster recovery times, making them increasingly attractive t%li%both patients and surgeons. Technological advancements in robotic-assisted laparoscopic surgery have opened up new possibilities for orthopedic interventions, enabling surgeons t%li%perform complex procedures with greater precision and control. As a result, the orthopedic surgery segment within the Laparoscopy segment is expected t%li%experience substantial growth as healthcare providers seek innovative solutions t%li%meet the evolving needs of patients with orthopedic conditions.

End User Insights

Based on the end user, the market is segmented int%li%hospitals, specialty clinics, research institutes, ambulatory surgical centres, laboratories, rehabilitation centres, and others. Among these, hospitals exert a dominant influence due t%li%their investments in advanced medical robotics technology. This enables them t%li%offer precise and minimally invasive surgeries, resulting in improved patient outcomes, reduced complications, and shortened recovery time. Such capabilities attract patients seeking high-quality healthcare services, while establishing a strong brand image for the hospital. This differentiation from competitors appeals t%li%patients wh%li%value advanced technology and medical expertise. Hospitals serve as the primary point of care delivery for a wide range of medical conditions and procedures, making them the largest consumers of healthcare robotics solutions. These institutions are equipped with comprehensive infrastructure, advanced medical technologies, and specialized clinical expertise, enabling them t%li%leverage robotics technology across various departments and specialties. One of the key factors driving hospitals' dominance in the healthcare robotics market is the growing demand for automation and precision in surgical procedures. Robotics-assisted surgeries offer numerous advantages, including enhanced dexterity, improved visualization, and greater accuracy, leading t%li%better surgical outcomes and reduced patient recovery times. As hospitals strive t%li%enhance patient safety, optimize clinical workflows, and improve surgical precision, they increasingly turn t%li%robotics solutions t%li%meet these objectives.

Hospitals play a central role in driving innovation and adoption of healthcare robotics through research, development, and clinical integration. Leading hospitals collaborate with robotics manufacturers, research institutions, and academic centers t%li%develop and evaluate new robotic technologies, refine surgical techniques, and conduct clinical trials. These partnerships foster innovation and drive advancements in healthcare robotics, paving the way for the introduction of cutting-edge robotic systems and applications. Hospitals' significant market share in the healthcare robotics market is attributed t%li%their ability t%li%invest in expensive capital equipment and absorb associated costs. While healthcare robotics technologies offer long-term benefits in terms of improved patient outcomes and operational efficiencies, they often require substantial upfront investment. Hospitals, with their financial resources and budgetary allocations for capital expenditures, are better positioned t%li%procure and deploy robotics systems compared t%li%smaller healthcare facilities.

Regional Insights

North America currently holds the leadership position, driven by the rapidly growing geriatric patient population affected by weak bone density and accident-related injuries. The region benefits from lucrative opportunities, a well-established healthcare infrastructure, and a high prevalence of minimally invasive surgeries, contributing t%li%the expansion of the market size. Automation has emerged as a crucial element in pharmaceutical manufacturing, ensuring higher accuracy and reducing workload. In this regard, robotics has revolutionized the medical field in the region, addressing the shortage of surgeons and healthcare professionals in the United States and thereby stimulating the growth rate of the regional market. The increasing incidence of chronic disorders such as diabetes, cardiovascular diseases, and cancer has propelled the utilization of automated surgical equipment, consequently driving the demand for surgical robotics in the region.

The continuously advancing healthcare infrastructure in APAC, combined with the growing automation trend in the medical field, positions the region as one of the most promising markets for medical robotics. China plays a pivotal role in driving market growth in APAC, fueled by the strong demand for medical robots alongside the increasing utilization of instrument-based services. This demand surge is further fueled by the scarcity of skilled physiotherapists and surgeons in the region. The rise of government initiatives aimed at advancing healthcare infrastructure, coupled with the growing interest from foreign investors in automated instruments, is set t%li%have a profound impact on the medical robotics industry in the coming years.

Key Market Players
  • iRobot Corporation
  • Titan Medical Inc.
  • Hansen Technologies Ltd
  • Renishaw plc
  • Intuitive Surgical, Inc.
  • Medtronic Plc
  • DENSO Products and Services Americas, Inc.
  • Accuray Incorporated
  • Stryker Corporation
  • Varian Medical Systems, Inc.
Report Scope:

In this report, the Global Healthcare Robotics Market has been segmented int%li%the following categories, in addition t%li%the industry trends which have als%li%been detailed below:
  • Healthcare Robotics Market, By Product:
  • Surgical Robots
  • Telemedicine Robots
  • Rehabilitation Robots
  • Non-invasive Radiosurgery Robots
  • Pharmacy and Hospital Automation Robots
  • Healthcare Robotics Market, By Application:
  • Neurology Applications
  • Cardiology Applications
  • Orthopedic Applications
  • Laparoscopic Applications
  • Others
  • Healthcare Robotics Market, By End User:
  • Hospitals
  • Specialty Clinics
  • Research Institutes
  • Ambulatory Surgical Centres
  • Laboratories
  • Rehabilitation Centres
  • Others
  • Healthcare Robotics Market, By Region:
  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Healthcare Robotics Market.

Available Customizations:

Global Healthcare Robotics market report with the given market data, TechSci Research offers customizations according t%li%a company's specific needs. The following customization options are available for the report:

Company Information
    • Detailed analysis and profiling of additional market players (up t%li%five).
1. PRODUCT OVERVIEW

1.1. Market Definition
1.2. Scope of the Market
  1.2.1. Markets Covered
  1.2.2. Years Considered for Study
  1.2.3. Key Market Segmentations

2. RESEARCH METHODOLOGY

2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validations
2.7. Assumptions and Limitations

3. EXECUTIVE SUMMARY

3.1. Overview of the Market
3.2. Overview of Key Market Segmentations
3.3. Overview of Key Market Players
3.4. Overview of Key Regions/Countries
3.5. Overview of Market Drivers, Challenges, Trends

4. VOICE OF CUSTOMER

5. GLOBAL HEALTHCARE ROBOTICS MARKET OUTLOOK

5.1. Market Size & Forecast
  5.1.1. By Value
5.2. Market Share & Forecast
  5.2.1. By Product (Surgical Robots, Telemedicine Robots, Rehabilitation Robots, Non-invasive Radiosurgery Robots, Pharmacy and Hospital Automation Robots)
  5.2.2. By Application (Neurology Applications, Cardiology Applications, Orthopedic Applications, Laparoscopic Applications, Others)
  5.2.3. By End User (Hospitals, Specialty Clinics, Research Institutes, Ambulatory Surgical Centers, Laboratories, Rehabilitation Centers, Others)
  5.2.4. By Region
  5.2.5. By Company (2023)
5.3. Market Map

6. NORTH AMERICA HEALTHCARE ROBOTICS MARKET OUTLOOK

6.1. Market Size & Forecast
  6.1.1. By Value
6.2. Market Share & Forecast
  6.2.1. By Product
  6.2.2. By Application
  6.2.3. By End User
  6.2.4. By Country
6.3. North America: Country Analysis
  6.3.1. United States Healthcare Robotics Market Outlook
    6.3.1.1. Market Size & Forecast
      6.3.1.1.1. By Value
    6.3.1.2. Market Share & Forecast
      6.3.1.2.1. By Product
      6.3.1.2.2. By Application
      6.3.1.2.3. By End User
  6.3.2. Canada Healthcare Robotics Market Outlook
    6.3.2.1. Market Size & Forecast
      6.3.2.1.1. By Value
    6.3.2.2. Market Share & Forecast
      6.3.2.2.1. By Product
      6.3.2.2.2. By Application
      6.3.2.2.3. By End User
  6.3.3. Mexico Healthcare Robotics Market Outlook
    6.3.3.1. Market Size & Forecast
      6.3.3.1.1. By Value
    6.3.3.2. Market Share & Forecast
      6.3.3.2.1. By Product
      6.3.3.2.2. By Application
      6.3.3.2.3. By End User

7. EUROPE HEALTHCARE ROBOTICS MARKET OUTLOOK

7.1. Market Size & Forecast
  7.1.1. By Value
7.2. Market Share & Forecast
  7.2.1. By Product
  7.2.2. By Application
  7.2.3. By End User
  7.2.4. By Country
7.3. Europe: Country Analysis
  7.3.1. Germany Healthcare Robotics Market Outlook
    7.3.1.1. Market Size & Forecast
      7.3.1.1.1. By Value
    7.3.1.2. Market Share & Forecast
      7.3.1.2.1. By Product
      7.3.1.2.2. By Application
      7.3.1.2.3. By End User
  7.3.2. United Kingdom Healthcare Robotics Market Outlook
    7.3.2.1. Market Size & Forecast
      7.3.2.1.1. By Value
    7.3.2.2. Market Share & Forecast
      7.3.2.2.1. By Product
      7.3.2.2.2. By Application
      7.3.2.2.3. By End User
  7.3.3. Italy Healthcare Robotics Market Outlook
    7.3.3.1. Market Size & Forecast
      7.3.3.1.1. By Value
    7.3.3.2. Market Share & Forecasty
      7.3.3.2.1. By Product
      7.3.3.2.2. By Application
      7.3.3.2.3. By End User
  7.3.4. France Healthcare Robotics Market Outlook
    7.3.4.1. Market Size & Forecast
      7.3.4.1.1. By Value
    7.3.4.2. Market Share & Forecast
      7.3.4.2.1. By Product
      7.3.4.2.2. By Application
      7.3.4.2.3. By End User
  7.3.5. Spain Healthcare Robotics Market Outlook
    7.3.5.1. Market Size & Forecast
      7.3.5.1.1. By Value
    7.3.5.2. Market Share & Forecast
      7.3.5.2.1. By Product
      7.3.5.2.2. By Application
      7.3.5.2.3. By End User

8. ASIA-PACIFIC HEALTHCARE ROBOTICS MARKET OUTLOOK

8.1. Market Size & Forecast
  8.1.1. By Value
8.2. Market Share & Forecast
  8.2.1. By Product
  8.2.2. By Application
  8.2.3. By End User
  8.2.4. By Country
8.3. Asia-Pacific: Country Analysis
  8.3.1. China Healthcare Robotics Market Outlook
    8.3.1.1. Market Size & Forecast
      8.3.1.1.1. By Value
    8.3.1.2. Market Share & Forecast
      8.3.1.2.1. By Product
      8.3.1.2.2. By Application
      8.3.1.2.3. By End User
  8.3.2. India Healthcare Robotics Market Outlook
    8.3.2.1. Market Size & Forecast
      8.3.2.1.1. By Value
    8.3.2.2. Market Share & Forecast
      8.3.2.2.1. By Product
      8.3.2.2.2. By Application
      8.3.2.2.3. By End User
  8.3.3. Japan Healthcare Robotics Market Outlook
    8.3.3.1. Market Size & Forecast
      8.3.3.1.1. By Value
    8.3.3.2. Market Share & Forecast
      8.3.3.2.1. By Product
      8.3.3.2.2. By Application
      8.3.3.2.3. By End User
  8.3.4. South Korea Healthcare Robotics Market Outlook
    8.3.4.1. Market Size & Forecast
      8.3.4.1.1. By Value
    8.3.4.2. Market Share & Forecast
      8.3.4.2.1. By Product
      8.3.4.2.2. By Application
      8.3.4.2.3. By End User
  8.3.5. Australia Healthcare Robotics Market Outlook
    8.3.5.1. Market Size & Forecast
      8.3.5.1.1. By Value
    8.3.5.2. Market Share & Forecast
      8.3.5.2.1. By Product
      8.3.5.2.2. By Application
      8.3.5.2.3. By End User

9. SOUTH AMERICA HEALTHCARE ROBOTICS MARKET OUTLOOK

9.1. Market Size & Forecast
  9.1.1. By Value
9.2. Market Share & Forecast
  9.2.1. By Product
  9.2.2. By Application
  9.2.3. By End User
  9.2.4. By Country
9.3. South America: Country Analysis
  9.3.1. Brazil Healthcare Robotics Market Outlook
    9.3.1.1. Market Size & Forecast
      9.3.1.1.1. By Value
    9.3.1.2. Market Share & Forecast
      9.3.1.2.1. By Product
      9.3.1.2.2. By Application
      9.3.1.2.3. By End User
  9.3.2. Argentina Healthcare Robotics Market Outlook
    9.3.2.1. Market Size & Forecast
      9.3.2.1.1. By Value
    9.3.2.2. Market Share & Forecast
      9.3.2.2.1. By Product
      9.3.2.2.2. By Application
      9.3.2.2.3. By End User
  9.3.3. Colombia Healthcare Robotics Market Outlook
    9.3.3.1. Market Size & Forecast
      9.3.3.1.1. By Value
    9.3.3.2. Market Share & Forecast
      9.3.3.2.1. By Product
      9.3.3.2.2. By Application
      9.3.3.2.3. By End User

10. MIDDLE EAST AND AFRICA HEALTHCARE ROBOTICS MARKET OUTLOOK

10.1. Market Size & Forecast
  10.1.1. By Value
10.2. Market Share & Forecast
  10.2.1. By Product
  10.2.2. By Application
  10.2.3. By End User
  10.2.4. By Country
10.3. MEA: Country Analysis
  10.3.1. South Africa Healthcare Robotics Market Outlook
    10.3.1.1. Market Size & Forecast
      10.3.1.1.1. By Value
    10.3.1.2. Market Share & Forecast
      10.3.1.2.1. By Product
      10.3.1.2.2. By Application
      10.3.1.2.3. By End User
  10.3.2. Saudi Arabia Healthcare Robotics Market Outlook
    10.3.2.1. Market Size & Forecast
      10.3.2.1.1. By Value
    10.3.2.2. Market Share & Forecast
      10.3.2.2.1. By Product
      10.3.2.2.2. By Application
      10.3.2.2.3. By End User
  10.3.3. UAE Healthcare Robotics Market Outlook
    10.3.3.1. Market Size & Forecast
      10.3.3.1.1. By Value
    10.3.3.2. Market Share & Forecast
      10.3.3.2.1. By Product
      10.3.3.2.2. By Application
      10.3.3.2.3. By End User

11. MARKET DYNAMICS

11.1. Drivers
11.2. Challenges

12. MARKET TRENDS & DEVELOPMENTS

12.1. Recent Development
12.2. Mergers & Acquisitions
12.3. Product Launches

13. GLOBAL HEALTHCARE ROBOTICS MARKET: SWOT ANALYSIS

14. PORTER’S FIVE FORCES ANALYSIS

14.1. Competition in the Industry
14.2. Potential of New Entrants
14.3. Power of Suppliers
14.4. Power of Customers
14.5. Threat of Substitute Products

15. COMPETITIVE LANDSCAPE

15.1. iRobot Corporation
  15.1.1. Business Overview
  15.1.2. Company Snapshot
  15.1.3. Products & Services
  15.1.4. Financials (As Reported)
  15.1.5. Recent Developments
  15.1.6. Key Personnel Details
  15.1.7. SWOT Analysis
15.2. Titan Medical Inc.
15.3. Hansen Technologies Ltd
15.4. Renishaw plc
15.5. Intuitive Surgical, Inc.
15.6. Medtronic Plc
15.7. DENSO Products and Services Americas, Inc.
15.8. Accuray Incorporated
15.9. Stryker Corporation
15.10. Varian Medical Systems, Inc.

16. STRATEGIC RECOMMENDATIONS

17. ABOUT US & DISCLAIMER



More Publications